Role of dndC gene in DNA degeneration in pulsed-field gel electrophoresis and treatment method
-
摘要:
目的 了解大肠埃希菌和弗格森埃希菌dndC基因的携带情况,以及该基因与脉冲场凝胶电泳(PFGE)基因组降解表型之间的关系,探讨PFGE中菌株基因组降解的原因及处理方法。 方法 使用PFGE对450株大肠埃希菌和弗格森埃希菌进行分析,设计引物检测dndC基因的携带情况并进行序列测定。 通过dndC基因序列比对和进化树的构建,获得dndC基因型别以及其在不同型别大肠埃希菌中的分布。 通过添加硫脲和消毒电泳仪研究基因组降解的处理方法。 结果 450株大肠埃希菌和弗格森埃希菌中,降解的菌株为40株(8.89%)。 dndC基因阳性菌株33株(7.33%),均出现了降解。 大肠埃希菌携带的dndC基因可分为8个群。 不同型别大肠埃希菌中均存在dndC基因阳性菌株,且阳性率存在差异。 添加硫脲可以有效缓解PFGE分析中dndC基因导致的降解,电泳仪消毒可以缓解全胶降解的情况。 结论 dndC基因会导致大肠埃希菌和弗格森埃希菌PFGE分析中基因组降解,添加硫脲可以缓解此降解。 Abstract:Objective To understand the carriage of dndC gene in Escherichia coli and E. fergusonii strains and the relationship between the dndC gene and the DNA degeneration phenotype, and explore the causes of DNA degeneration in pulsed-field gel electrophoresis (PFGE) and treatment methods. Methods A total of 450 E. coli and E. fergusonii strains were analyzed by PFGE. The primers were designed to detect and sequence the dndC gene. The phylogenetic tree was constructed based on the dndC genes obtained from this study and NCBI database to analyze the genotype of dndC gene and the distribution of dndC gene in different types of E. coli. Addition of thiourea and disinfection of electrophoresis equipment were used to study the treatment methods of DNA degeneration. Results There were 40 strains (8.89%) with the DNA degeneration phenotype by PFGE analysis and 33 strains of them were positive for dndC gene, accounting for 7.33% of 450 E. coli and E. fergusonii strains. The dndC genes of E. coli were divided into eight groups. There were positive strains carrying dndC gene in all eight types of E. coli strains, and the positive rates of dndC gene in eight types of E. coli strains were different. Addition of thiourea and disinfection of electrophoresis equipment could effectively improve the DNA degeneration phenotype. Conclusion The dndC gene can cause DNA degradation of E. coli and E. fergusonii in PFGE analysis. Addition of thiourea was an effective method to ease the DNA degradation caused by dndC. -
Key words:
- dndC gene /
- Escherichia coli /
- Escherichia fergusonii /
- Pulsed-field gel electrophoresis /
- DNA degeneration /
- Thiourea
-
表 1 450株菌的dndC基因携带情况及降解表型
Table 1. Carriage of dndC gene and DNA degeneration phenotype of 450 E. coli and E. fergusonii strains
菌株来源 菌种类别 菌株数(株) 降解表型 dndC基因阳性 菌株
数阳性率
(%)菌株
数阳性率
(%)环境 弗格森埃希菌 110 14 12.73 14 12.73 野生动物 大肠埃希菌 236 22 9.32 15 6.36 患者和食品 大肠埃希菌 104 4 3.85 4 3.85 合计 450 40 8.89 33 7.33 表 2 不同型别大肠埃希菌中dndC基因的携带情况
Table 2. Carriage of dndC gene in different types of E.coli
型别/亚型 菌株数(株) dndC基因阳性菌株数(株) 阳性率(%) A 2 191 96 4.38 B1 2 820 202 7.16 B2 1 907 24 1.26 B2-1 541 3 0.55 B2-2 1 366 21 1.54 C 540 10 1.85 D 616 96 15.58 D1 273 57 20.88 D2 173 31 17.92 D3 170 8 4.71 E 1 020 22 2.15 E1 270 22 8.15 E2 750 10 1.33 F 197 12 6.09 G 96 9 9.38 合计 9 387 481 5.12 -
[1] 汪皓秋, 郑伟, 俞骅, 等. 2002-2013年杭州地区甲型副伤寒沙门菌分子分型研究[J]. 中华微生物学和免疫学杂志,2017,37(1):57–61. DOI:10.3760/cma.j.issn.0254−5101.2017.01.009.Wang HQ, Zheng W, Yu H, et al. Molecular typing of Salmonella paratyphi A strains isolated in Hangzhou area from 2002 to 2013[J]. Chin J Microbiol Immunol, 2017, 37(1): 57–61. DOI: 10.3760/cma.j.issn.0254−5101.2017.01.009. [2] 吴伟元, 王辉, 陆坚, 等. 多位点串联重复序列分析和脉冲场凝胶电泳对伤寒沙门菌基因分型[J]. 中华微生物学和免疫学杂志,2014,34(4):264–268. DOI:10.3760/cma.j.issn.0254−5101.2014.04.003.Wu WY, Wang H, Lu J, et al. Comparative evaluation of multilocus variable-number tandem-repeat analysis and pulsed-field gel electrophoresis for genotyping Salmonella enterica serovar Typhi isolates[J]. Chin J Microbiol Immunol, 2014, 34(4): 264–268. DOI: 10.3760/cma.j.issn.0254−5101.2014.04.003. [3] Silbert S, Boyken L, Hollis RJ, et al. Improving typeability of multiple bacterial species using pulsed-field gel electrophoresis and thiourea[J]. Diagn Microbiol Infect Dis, 2003, 47(4): 619–621. DOI: 10.1016/S0732−8893(03)00164−0. [4] Wang LR, Chen S, Vergin KL, et al. DNA phosphorothioation is widespread and quantized in bacterial genomes[J]. Proc Natl Acad Sci USA, 2011, 108(7): 2963–2968. DOI: 10.1073/pnas.1017261108. [5] Wang LR, Chen S, Xu TG, et al. Phosphorothioation of DNA in bacteria by dnd genes[J]. Nat Chem Biol, 2007, 3(11): 709–710. DOI: 10.1038/nchembio.2007.39. [6] Liesegang A, Tschäpe H. Short communication-modified pulsed-field gel electrophoresis method for DNA degradation-sensitive Salmonella enterica and Escherichia coli strains[J]. Int J Med Microbiol, 2002, 291(8): 645–648. DOI: 10.1078/1438−4221−00180. [7] O'Reilly LC. A method for overcoming DNA degradation during PFGE for Serratia marcescens[J]. J Microbiol Methods, 2011, 85(2): 173–174. DOI: 10.1016/j.mimet.2011.02.014. [8] Corkill JE, Graham R, Hart CA, et al. Pulsed-field gel electrophoresis of degradation-sensitive DNAs from Clostridium difficile PCR ribotype 1 strains[J]. J Clin Microbiol, 2000, 38(7): 2791–2792. DOI: 10.1128/JCM.38.7.2791−2792.2000. [9] Römling U, Tümmler B. Achieving 100% typeability of Pseudomonas aeruginosa by pulsed-field gel electrophoresis[J]. J Clin Microbiol, 2000, 38(1): 464–465. DOI: 10.1128/JCM.38.1.464−465.2000. [10] Ho WS, Ou HY, Yeo CC, et al. The dnd operon for DNA phosphorothioation modification system in Escherichia coli is located in diverse genomic islands[J]. BMC Genomics, 2015, 16: 199. DOI: 10.1186/s12864−015−1421−8. [11] Ray T, Mills A, Dyson P. Tris-dependent oxidative DNA strand scission during electrophoresis[J]. Electrophoresis, 1995, 16(1): 888–894. DOI: 10.1002/elps.11501601149. [12] Ye J, Coulouris G, Zaretskaya I, et al. Primer-BLAST: A tool to design target-specific primers for polymerase chain reaction[J]. BMC Bioinformatics, 2012, 13(1): 134. DOI: 10.1186/1471−2105−13−134. [13] Abram K, Udaondo Z, Bleker C, et al. Mash-based analyses of Escherichia coli genomes reveal 14 distinct phylogroups[J]. Commun Biol, 2021, 4: 117. DOI: 10.1038/s42003−020−01626−5. [14] Xu TG, Yao F, Zhou XF, et al. A novel host-specific restriction system associated with DNA backbone S-modification in Salmonella[J]. Nucleic Acids Res, 2010, 38(20): 7133–7141. DOI: 10.1093/nar/gkq610. [15] Clermont O, Christenson JK, Denamur E, et al. The Clermont Escherichia coli phylo-typing method revisited: improvement of specificity and detection of new phylo-groups[J]. Environ Microbiol Rep, 2013, 5(1): 58–65. DOI: 10.1111/1758−2229.12019. [16] Fibke CD, Croxen MA, Geum HM, et al. Genomic epidemiology of major extraintestinal pathogenic Escherichia coli lineages causing urinary tract infections in young women across Canada[J]. Open Forum Infect Dis, 2019, 6(11): ofz431. DOI: 10.1093/ofid/ofz431. -