疾病监测  2014, Vol. 29 Issue (12): 938-943

扩展功能

文章信息

谭红丽, 王勇, 程雪琴, 黄艳梅, 刘炜, 张丽娟
TAN Hong-li, WANG Yong, CHENG Xue-qin, HUANG Yan-mei, LIU Wei, ZHANG Li-juan
铜绿假单胞菌耐药基因分子流行病学调查
Molecular epidemiological survey of drug resistance gene of Pseudomonas aeruginosa in a hospital in Yunnan, China
疾病监测, 2014, 29(12): 938-943
Disease Surveillance, 2014, 29(12): 938-943
10.3784/j.issn.1003-9961.2014.12.005

文章历史

收稿日期:2014-09-16
铜绿假单胞菌耐药基因分子流行病学调查
谭红丽1, 王勇2,3, 程雪琴2, 黄艳梅1, 刘炜2, 张丽娟2    
1. 云南省第三人民医院, 云南 昆明 650011;
2. 中国疾病预防控制中心传染病预防控制所, 北京 102206;
3. 新疆石河子大学, 新疆 石河子 832003
摘要目的 了解云南省昆明某医院临床铜绿假单胞菌分离株耐药特征及耐药基因分子流行病学特征,为临床治疗与控制院内感染提供依据。方法 2013年6-9月共收集全院不同病区感染患者28株铜绿假单胞菌。微生物自动分析仪鉴定菌株及耐药分析。PCR扩增及序列分析β-内酰胺酶bla基因、氟喹诺酮类及氨基糖苷类耐药基因及IS插入元件及整合子。脉冲场凝胶电泳(pulsed field gel electrophoresis,PFGE)分析菌株间遗传变异关系。结果 全部菌株呈现多重耐药且存在有广泛耐药性(extensively drug-resistant,XDR)及泛耐药性(pendrug-resistant,PDR)菌。100%(28/28)菌株对一代/二代及大部分三代/四代头孢霉素、磺胺类及叶酸代谢途径抑制剂耐药。85.7%(24/28)菌株对碳青霉烯类抗生素美罗培南(MEM)、亚胺培南(IMP)耐药, 50.0%(14/28)菌株对厄他培南(ETP)耐药。92.9%(26/28)菌株同时携带β-内酰胺酶基因、氟喹诺酮类及氨基糖苷类耐药基因,且菌株间基因谱存在较大不同。blaFOX/qnrB/aacA4为主要耐药基因谱(21.4%,6/28)。57.1%(16/28)菌株携带int1整合酶基因,21.4%(6/28)菌株携带ISCR1插入元件,35.7%(10/28)菌株携带ISEcp1插入元件。PFGE显示14株菌株分为8个克隆群。结论 本研究铜绿假单胞菌分离株存在较高耐药率,多种耐药基因存在不同克隆菌株中,提示耐药基因在菌株间及不同菌种间存在快速传播风险。
关键词铜绿假单胞菌     多重耐药     耐药基因     分子流行病学    
Molecular epidemiological survey of drug resistance gene of Pseudomonas aeruginosa in a hospital in Yunnan, China
TAN Hong-li1 , WANG Yong2,3, CHENG Xue-qin2, HUANG Yan-mei1, LIU Wei2, ZHANG Li-juan2     
1. The 3rd People's Hospital of Yunnan Province, Kunming 650011, Yunnan, China;
2. Institute for Communicable Disease Prevention and Control, Chinese Center for Disease Control and Prevention, Beijing 102206, China;
3. Shihezi University, Shihezi 832003, Xinjiang, China
Abstract:Objective To understand the characteristics of drug resistance and molecular epidemiological characteristics of drug resistant gene of Pseudomonas aeruginosa in Yunnan province, and provide useful information for clinical antibiotic use. Methods A total of 28 P. aeruginosa strains were isolated from the patients in our hospital from June to September 2013. The identification and drug susceptibility test were conducted by using bioMerieux VITEK-2 system. The drug-resistance determents were analyzed by PCR amplification and sequencing. Results According to the standardized international definitions for drug-resistance, 22 strains (78.6%) were confirmed as multidrug-resistant (MDR), 4 (14.3%) were extensive drug resistant (XDR) and 2 (7.1%) were pan-drug resistant (PDR). All the isolates were resistant to the 1st and 2nd generation cephalosporins and most 3rd and 4th generation cephalosporins, trimethoprim-sulfamethoxazole and furadantin. Moreover, most strains (85.7%) showed carbapenem-resistant. The analysis of the resistance determinant indicated that 26 strains (92.9%) carried both quinolone and aminoglycosides resistance-associated genes, and the blaFOX/qnrB/aacA4 was predominant (21.4%, 6/28). The analysis of the gene-capturing elements showed that 16(57.1%)strains carried the int 1 gene, 6 (21.4%) carried the IS CR1 gene and 10 (35.7%) carried the ISEcp1 respectively. Multi-clone groups were found by PFGE analysis. Conclusion High positive rates of multi-clone MDR P. aeruginosa carrying β-Lactamase, quinolone and aminoglycosides resistance-associated genes was observed in this study and effective control measures should be taken urgently.
Key words: Pseudomonas aeruginosa     Multi-drug resistance     Resistance-associated gene     Molecular epidemiological characteristics    

铜绿假单胞菌(Pseudomonas aeruginosa)是重要的院内感染条件致病菌[1]。该菌广泛分布自然环境中,近年多耐菌株院内感染暴发频繁报道[2],给临床救治尤其是ICU病房重症患者康复带来巨大挑战[3]。随着云南省第三人民医院报告多重耐药铜绿假单胞菌临床分离株率不断上升,为及时监测分离株耐药表型及基因型特征,笔者对28株铜绿假单胞菌进行了分子流行病学分析。 1 材料与方法 1.1 菌株

2013年6 9月共分离全院不同病区包括ICU病房感染患者28株铜绿假单胞菌。所有菌株为首次分离。其中22株分离于痰标本、4株来自尿标本、2株来自分泌物。平均年龄68.4岁(范围26.0~93.0岁),男女性别比为13 ∶ 1(26/2)。 1.2 菌株鉴定及耐药检测

菌株鉴定及药物敏感分析均使用法国梅里埃全自动微生物分析仪(bioMerieux VITEK-2 system)及该公司提供的细菌鉴定卡及药敏卡完成。细菌生化鉴定后菌株进一步采用原核细菌16S rRNA基因扩增及测序证实[4]。12类21种抗生素用于菌株耐药表型分析,见表 1。耐药分类既多耐药菌(multi-drug-resistant,MDR)、广泛耐药菌(extensively drug-resistant,XDR)及泛耐药菌(pandrug-resistant,PDR)按最新国际耐药统一分类标准进行[5]

表 1 抗生素敏感试验结果 Table 1 Results of drug susceptibility testing for isolated strains
分类抗生素名称(1) 细菌耐药及敏感率(%)
S(2)I(2)R(2)
氨苄西林AMP0.00.0100.0
羧苄青霉素+β-内酰胺抑制剂TZP35.721.435.7
青霉素+β-内酰胺抑制剂 SAM0.00.0100.0
一代/二代头孢霉素CXM0.00.0100.0
CFZ0.00.0100.0
三代/四代头孢霉素CRO0.00.0100.0
CAZ28.621.442.9
SCF21.47.164.3
FEP28.621.442.9
头霉素CTT0.00.0100.0
碳青霉烯类ETP21.428.650.0
MEM7.17.185.7
IMP14.30.085.7
单环β-内酰胺类ATM21.40.078.6
氟喹诺酮类CIP28.621.442.9
LEV28.621.450.0
氨基糖苷类GM64.37.121.4
TM78.60.021.4
AN85.70.014.3
叶酸代谢途径抑制剂SXT0.00.0100.0
磺胺类FD0.00.0100.0
注:(1)AMP:氨苄西林;TZP:哌拉西林/三唑巴坦;SAM:氨苄西林/舒巴坦;CXM:头孢呋辛;CFZ:头孢唑啉;CRO:头孢曲松;CAZ:头孢他啶;SCF:头孢哌酮/舒巴坦;FEP:头孢吡肟;CTT:头孢替坦;ETP:厄他培南;MEM:美罗培南;IPM:亚胺培南;ATM:氨曲南;CIP:环丙沙星;LEV:左氧氟沙星;GM:庆大霉素;TM:妥布霉素; AN:阿米卡星;SXT:复方新诺明;FD:呋喃妥因。(2)S.敏感;I.中介;R.耐药。
1.3 耐药基因型分析

超广谱β-内酰胺酶bla基因、氟喹诺酮类及氨基糖苷类抗生素耐药基因、IS插入元件及整合子等PCR检测引物信息见表 2参考文献。合成引物由上海生工生物技术有限公司完成。细菌质粒提取使用百泰克生物技术有限公司试剂盒(Cat#DP1002)。细菌DNA使用德国 QIAGEN试剂盒(Cat No. 69506) 提取。PCR扩增使用Sensoquest Labcycler扩增仪进行,反应条件及退火温度按表 2参考文献进行。PCR产物送上海生工生物技术有限公司双向测序。序列同源比较用NCBI网站Blast平台进行。

表 2 耐药基因及基因捕获元件扩增引物信息 Table 2 Primer information used in amplification for resistant-associated genes
目标基因引物名称引物序列(5′-3′)片断大小参考文献
β-内酰胺类
TEMTEM-FTCC GCT CAT GAG ACA ATA ACC9316
TEM-RTTG GTC TGA CAG TTA CCA ATG C
SHVSHV-FTGG TTA TGC GTT ATA TTC GCC8686
SHV-RGGT TAG CGT TGC CAG TGC T
CTX-MCTX-FTCT TCC AGA ATA AGG AAT CCC9096
CTX-RCCG TTT CCG CTA TTA CAA AC
VEBVEB-F1GAT AGG AGT ACA GAC ATA TG 9146
VEB-R1TTT ATT CAA ATA GTA ATT CCA CG
PERPER-FATG AAT GTC ATC ACA AAA TG 9276
PER-RTCA ATC CGG ACT CAC T
GESGES-FATG CGC TTC ATT CAC GCA C 8646
GES-RCTA TTT GTC CGT GCT CAG G
KPCKPC-FATG TCA CTG TAT CGC CGT CT8827
KPC-RTTT TCA GAG CCT TAC TGC
NDMNDM-FGGT TTG GCG ATC TGG TTT TC6217
NDM-RCGG AAT GGC TCA TCA CGA
IMPIMP-FGGA ATA GAG TGG CTT AAT TCT C6247
IMP-RCCA AAC CAC TAC GTT ATC
VIMVIM-FGGT CTC ATT GTC CGT GAT GGT GAT GAG2717
VIM-RCTC GAT GAG AGT CCT TCT AGA G
CMYCMY-FTGG CCA GAA CTG ACA GGC AAA4627
CMY-RTTT CTC CTG AAC GTG GCT GGC
DHADHA-FAAC TTT CAC AGG TGT GCT GGG T4057
DHA-RCCG TAC GCA TAC TGG CTT TGC
FOXFOX-FAAC ATG GGG TAT CAG GGA GAT G190
FOX-RCAA AGC GCG TAA CCG GAT TGG
OXA OXA-2-FAAG AAA CGC TAC TCG CCT GC 4786
OXA-2-RCCA CTC AAC CCA TCC TAC CC
OXA-10-FGTC TTT CGA GTA CGG CAT TA 7206
OXA-10-RATT TTC TTA GCG GCA ACT TAC
OXA-23-FGAT CGG ATT GGA GAA CCG A7208
OXA-23-RATT TCT GAC CGC ATT TCC AT
OXA-24-FGGT TAG TTG GCC CCC TTA AA7208
OXA-24-RAGT TGA GCG AAA AGG GGA TT
OXA-51-FTAA TGC TTT GAT CGG CCT TG7208
OXA-51-RTGG ATT GCA CTT CAT CTT GG
OXA-48-FTTG GTG GCA TCG ATT ATC GG7438
OXA-48-RGAG CAC TTC TTT TGT GAT GGC
OXA-58-FAAG TAT TGG GGC TTG TGC TG7438
OXA-58-RCCC CTC TGC GCT CTA CAT AC
氟喹诺酮类
qnrAqnrA- FATT TCT CAC GCC AGG ATT TG 6277
qnrA -RGAT CGG CAA AGG TTA GGT CA
qnrBqnrB- F GAT CGT GAA AGC CAG AAA GG 4697
qnrB-RACG ATG CCT GGT AGT TGT CC
qnrCqnrC- FGGG TTG TAC ATT TAT TGA ATC G 3077
qnrC- RCAC CTA CCC ATT TAT TTT CA
qnrDqnrD- F CGA GAT CAA TTT ACG GGG AAT A 5337
qnrD- R AAC AAG CTG AAG CGC CTG 533
qnrSqnrS- FACG ACA TTC GTC AAC TGC AA 4177
qnrS- RTAA ATT GGC ACC CTG TAG GC
aac(6′) -Ib-craac(6′) -Ib-cr -FTTG CGA TGC TCT ATG AGT GGC TA4827
aac(6′) -Ib-craac(6′) -Ib-cr -RCTC GAA TGC CTG GCG TGT TT
qepAqepA- F AAC TGC TTG AGC CCG TAG AT 5967
qepA- RGTC TAC GCC ATG GAC CTC AC
gyrA突变gyrA-FCGA CCT TGC GAG AGA AAT6267
gyrA-R GTT CCA TCA GCC CTT CAA
氨基糖苷类
aacA4aacA4-FATG ACT GAG CAT GAC CTT GCG 5407
aacA4-RTTA GGC ATC ACT GCG TGT TCG
aacC1aacC1-FATG GGC ATC ATT CGC ACA TGT AGG 8737
aacC1-RTTA GGT GGC GGT ACT TGG GTC
aacC2aacC2-FATG CAT ACG CGG AAG GCA ATA AC 8616
aacC2-RCTA ACC GGA AGG CTC GCA AG
aadA1aadA1-FATG AGG GAA GCG GTG ATC G 7927
aadA1-RTTA TTT GCC GAC TAC CTT GGT G
aadBAadB-FATG GAC ACA ACG CAG GTC GC 5347
AadB-RTTA GGC CGC ATA TCG CGA CC
aphA6aphA6-FATG GAA TTG CCC AAT ATT ATT C 7817
aphA6-RTCA ATT CAA TTC ATC AAG TTT TA
插入元件/整合子
int1int1-FCCT CCC GCA CGA TGA TC2809
int1-RTCC ACG CAT CGT CAG GC
ISCR1CR1-FATG TCT CTG GCA AGG AAC GC14509
CR1-RAGA CGA CTC TGT GAT GGA TC
ISEcp1IS-FGTG CCC AAG GGG AGT GTA TG6156
IS-RACY TTA CTG GTR CTG CAC AT
1.4 脉冲场凝胶电泳(PFGE)

为分析菌株遗传变异关系,菌株进行了PFGE分型。按PFGE参考方法采用CHEF Mapper XA脉冲场电泳仪(Bio-Rad Laboratories,Hercules,CA)进行操作[10]。Fingerprinting Ⅱ软件(version 3.0,Bio-Rad Laboratories,Hercules,CA) 分析PFGE带型,相似性大于80%归为一簇。 2 结果 2.1 耐药分析

按国际耐药分类标准,78.6%(22/28)菌株为MDR菌,14.3%菌株为XDR菌,7.1%(2/28)菌株为PDR菌。全部菌株对AMP、SAM、CXM、CFZ、CRO、CTT、SXT及FD耐药。此外,绝大多数菌株对碳青霉烯类抗生素包括MEM(85.7%,24/28)、IMP(85.7%,24/28)及ETP(50.0%,14/28)耐药。近50%菌株显示对氟喹诺酮类LEV(50.0%,14/28)和CIP(42.9%12/28)不敏感。然而,绝大多数菌株对AN、TM及GM等氨基糖苷类抗生素敏感,敏感率分别为85.7%(24/28)、78.6%(22/28)和64.3%(18/28),结果见表 12.2 基因型检测

耐药基因型检测结果见表 2。92.9%(26/28)菌株同时携带有β-内酰胺酶bla基因、氟喹诺酮类及氨基糖苷类抗生素等抗性基因。在bla基因中,100%(28/28)检测到A、B、C、D类所有bla基因,但优势基因型仍为染色体介导blaFOX(71.4%,20/28)基因,其次是质粒介导的blaOXA基因(42.9%,12/28)。而blaSHVblaIMPblaCMY各检测出1株。检测到的氟喹诺酮类抗性基因qnrBqnrAaac(6′)-Ib-crqnrD分别占85.7%(24/28)、57.1%(16/28)、 28.6%(8/28)和7.1%(2/28)。氨基糖苷类耐药基因只检测到aacA4,占85.7%(24/28)。菌株间耐药基因谱存在较大变异,见表 3图 1blaFOX/qnrB/aacA4为主要基因谱(21.4%,6/28),其次是blaFOX/qnrB/aac(6′)-Ib-cr/aacA4(14.3%,4/28)。捕获基因及外来插入元件分析发现57.1%(16/28)菌株携带整合酶int1基因。21.4%(6/28)菌株携带插入元件ISCR1。35.7%(10/28)菌株携带ISEcp1插入元件。

表 3 试验菌株耐药基因型 Table 3 Drug resistant genotype of strains tested in study
基因型
编号
基因型菌株数构成比
(%)
1blaFOX/qnrB/aacA46 21.4
2blaOXA23-51-58/blaCMY/
qnrA/qnrD/aac(6′)-Ib-cr/aacA4
2 7.1
3blaFOX/qnrB/aac(6′)-Ib-cr/aacA4 4 14.3
4blaSHV/qnrA/qnrB/aac(6′)-Ib-cr/aacA42 7.1
5blaOXA23/blaFOX/
qnrD/aac(6′)-Ib-cr/aacA4
2 7.1
6blaFOX/qnrA/qnrB/aac(6′)-Ib-cr/aacA42 7.1
7blaOXA2/blaFOX4 14.3
8qnrB/aac(6′)-Ib-cr/aacA42 7.1
9qnrB/aacA42 7.1
10blaOXA2/blaIMP/blaFOX/qnrB/aacA42 7.1
2.3 耐药型与基因型比较分析

通过试验菌株耐药型与基因型比较分析,尽管多数耐药菌株均检测到相应耐药基因,但耐药基因分类上,却存在明显多态性,因此,分析全部试验菌株耐药谱与基因谱的相关性,并没有发现明显规律性。 2.4 PFGE分型特征

菌株遗传关系分析结果显示,除了14株细菌因无法复活或DNA降解没有完成PFGE试验外,其余14株PFGE分析成功菌株共分8群(>80%相似性为一群)(图 1)。而对应的耐药基因型也存在较大变异性。除了第7群与8群菌株间具有相同耐药基因谱外,没有发现其他PFGE群菌株与耐药基因谱明显的关联性。

注:blaOXA23-51-58代表该菌株blaOXA23blaOXA51blaOXA58复合存在。 图 1 部分菌株PFGE分析及耐药基因型 Figure 1 PFGE profile and drug-resistant genotype of strains tested in study
3 讨论

本研究首次对云南省昆明某三甲医院临床P. aeruginosa 分离株进行了耐药表型及耐药基因型研究。结果发现当地多重耐药尤其是产碳青霉烯酶分离株存在较高分离率。78.6%(22/28)菌株为MDR菌,且存在相当比例XDR及PDR菌株。菌株对头孢霉素类、磺胺类及叶酸代谢途径抑制剂等抗生素普遍耐药。试验发现绝大多数试验菌株的耐药表型均检测到相应的耐药基因。多数菌株(92.9%,26/28)同时携带有超广谱β-内酰胺酶基因、氟喹诺酮类及氨基糖苷类抗菌药物等耐药基因,且耐药基因谱呈现明显的多态性,如目前所发现的A、B、C、D类超广谱β-内酰胺酶耐药基因在本研究的分离株中均有检出。尽管如此,β-内酰胺酶耐药基因仍然以AmpC类blaFOX为主。值得注意的是,blaOXAβ-内酰胺酶以往在铜绿假单胞菌很少检测到,但近年来,越来越多的报道显示,该类基因在世界各地广泛流行[11, 12, 13, 14],并且新的变异型不断出现[15],如我国湖南省检测到OXA128及OXA129型[16]

与此同时,试验菌株遗传变异关系也存在同样现象,即存在多个PFGE克隆群,且与耐药基因型间没有检测到明显相关性。这一研究结果提示在有限地域内,不同耐药基因广泛存在不同菌株克隆群中将大大提高这些基因在不同菌株间甚至不同种、属间传播风险,极有可能导致某一耐药菌株的暴发流行。本试验还发现尽管氟喹诺酮类及氨基糖苷类抗性基因检出率很高,但菌株耐药表型检出率很低,这一现象在其他研究报告中也常见,我们推测其原因可能与耐药基因表达产物介导低水平耐药所致。

2010年,中国耐药监测网(CHINET)对全国14家医院铜绿假单胞菌分离株耐药性监测报告结果显示,昆明一医院的分离株对各种抗菌药物的耐药率均高于28%,对其中13种抗菌药物的耐药率及泛耐菌阳性率(4.7%)为14所医院中最高者[17]。同样2011年,全国15家医院监测数据显示,昆明地区分离株泛耐菌平均阳性率1.8%[17],而本研究泛耐菌检出率为7.1%。总之,当地临床P. aeruginosa 分离株存在较高耐药率及耐药基因携带率,将给当地临床治疗及院内感染暴发流行带来严重威胁。及时监控与采取必要防控措施具有十分重要的意义。

参考文献
[1] Gómez-Zorrilla S, Camoez M, Tubau F,et al. Antibiotic pressure is a major risk factor for rectal colonization by multidrug-resistant Pseudomonas aeruginosa in critically ill patients[J]. Antimicrob Agents Chemother,2014,58(10):5863-5870.
[2] Breathnach AS,Cubbon MD, Karunaharan RN,et al. Multidrug-resistant Pseudomonas aeruginosa outbreaks in two hospitals: association with contaminated hospital waste-water systems[J]. J Hosp Infect,2012,82(1):19-24.
[3] Manzur A, Tubau F, Pujol M,et al. Nosocomial outbreak due to extended-spectrum-beta-lactamase-producing Enterobacter cloacae in a cardiothoracic intensive care unit[J]. J Clin Microbiol,2007,45(8):2365-2369.
[4] Weisburg WG,Barns SM,Peleetier DA, et al. 16S ribosomal DNA amplification for phylogenetic study[J]. J Bacteriol,1991,173(2):697-703.
[5] Magiorakos AP, Srinivasan A, Carey RB, et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance [J]. Clin Microbiol Infect,2012,18(3):268-281.
[6] Kiratisin P, Apisarnthanarak A, Laesripa C, et al. Molecular characterization and epidemiology of extended-spectrum-lactamase-producing Escherichia coli and Klebsiella pneumoniaeisolates causing health care-associated infection in Thailand, where the CTX-M family is endemic [J]. Antimicrob Agents Chemother,2008,52(8):2818-2824.
[7] Li B, Yi Y,Wang Q, et al. Analysis of drug resistance determinants in Klebsiella pneumoniae isolates from a tertiary-care hospital in Beijing, China [J]. Plos ONE,2012,7:e42280.
[8] Woodford N, Ellington MJ, Coelho JM, et al. Multiplex PCR for genes encoding prevalent OXA carbapenemases in Acinetobacterspp[J]. Int J Antimicrob Agents,2006,27(4):351-353.
[9] Walther-Rasmussen J,Hoiby N. OXA-type carbapenemases[J]. J Antimicrob Chemother,2006,57(3):373-383.
[10] Johnson JK,Arduino SM, Stine OC, et al. Multilocus sequence typing compared to pulsed-field gel electrophoresis for molecular typing of Pseudomonas aeruginosa[J].J Clin Microbiol,2007,45:3707-3712.
[11] Yan JJ,Tsai SH, Chuang CL,et al. OXA-type beta-lactamases among extended-spectrum cephalosporin-resistant Pseudomonas aeruginosa isolates in a university hospital in southern Taiwan[J]. J Microbiol Immunol Infect,2006,39(2):130-134.http://www.ncbi.nlm.nih.gov/pubmed/16604245.
[12] Vahaboglu H, Budak F, Kasap M,et al. High prevalence of OXA-51-type class D beta-lactamases among ceftazidime-resistant clinical isolates of Acinetobacter spp.: co-existence with OXA-58 in multiple centres[J].J Antimicrob Chemother,2006,58(3):537-542.
[13] Danel F, Hall LM, Gur D, et al. OXA-16, a further extended-spectrum variant of OXA-10 beta-lactamase, from two Pseudomonas aeruginosaisolates[J].Antimicrob Agents Chemother,1998,42(12):3117-3122.
[14] Aubert D, Poirel L, Ali AB,et al. OXA-35 is an OXA-10-related beta-lactamase from Pseudomonas aeruginosa[J].J Antimicrob Chemother,2001,48(5):717-721.
[15] Juan C, Mulet X, Zamorano L,et al. Detection of the novel extended-spectrum beta-lactamase OXA-161 from a plasmid-located integron in Pseudomonas aeruginosa clinical isolates from Spain[J].Antimicrob Agents Chemother,2009,53(12):5288-5290.
[16] Liu W, Liu X, Liao J, et al. Identification of blaOXA-128 and blaOXA-129, two novel OXA-type extended-spectrum-β-lactamases in Pseudomonas aeruginosa, in Hunan province, China[J].J Basic Microbiol,2010,Suppl 1:S116-119.
[17] Zhang WB, Ni YX, Sun JY, et al. CHINET 2010 surveillance of antimicrobial resistance in Pseudomonas aeruginosa[J].Chinese Journal of Infection and Chemotherapy,2012,12(3):161-166.(in Chinese) 张祎博,倪语星,孙景勇,等.2010年中国CHINET铜绿假单胞菌耐药性监测[J].中国感染与化疗杂志,2012,12(3):161-166.