疾病监测  2015, Vol. 30 Issue (1): 8-13

扩展功能

文章信息

谭红丽, 程雪琴, 王勇, 黄艳梅, 刘炜, 张丽娟
TAN Hong-li, CHENG Xue-qin, WANG Yong, HUANG Yan-mei, LIU Wei, ZHANG Li-juan
多耐鲍曼不动杆菌分子流行病学分析
Molecular characterization of multi-drug-resistant Acinetobacter baumannii isolated from patients in a hospital in Yunnan
疾病监测, 2015, 30(1): 8-13
Disease Surveillance, 2015, 30(1): 8-13
10.3784/j.issn.1003-9961.2015.01.004

文章历史

收稿日期:2014-07-25
多耐鲍曼不动杆菌分子流行病学分析
谭红丽1, 程雪琴2, 王勇2, 3, 黄艳梅1, 刘炜2, 张丽娟2     
1. 云南省第三人民医院, 云南 昆明 650011;
2. 中国疾病预防控制中心传染病预防控制所, 北京 102206;
3. 新疆石河子大学, 新疆 石河子 832003
摘要目的 分析云南省第三人民医院鲍曼不动杆菌分离株耐药表型及耐药基因分子流行病学特征. 方法 2013年6-9月,分离该院不同重症监护室(ICU)院内感染患者鲍曼不动杆菌28株,全自动微生物分析仪分类鉴定及耐药分析.PCR扩增及测序β-内酰胺酶、氟喹诺酮类及氨基糖苷类等抗性基因及IS插入元件及整合子等. 结果 78.6%菌株为多药耐药菌,14.3%菌株为广泛耐药菌,7.1%的菌株为泛耐药菌. 100%菌株不仅对一代/二代头孢类抗生素耐药,且对三代/四代抗生素CRO、CAZ、 FEP及单环β-内酰胺类(ATM)、氟喹诺酮类(CIP、LEV)、氨基糖苷类(AN)及磺胺类(FD)耐药.特别是92.9%菌株对碳青霉烯类抗生素耐药.质粒介导的D类β-内酰胺类抗性基因blaOXA、氟喹诺酮类[aac(6')-Ib-cr、qnrAqnrD]及氨基糖苷类(aacA4、 aadA1及 aacC2)为主要基因型.100%菌株复合携带blaOXAaac(6')-Ib-craacA4等抗性基因及整合酶int1基因.85.7%菌株携带ISCR1.全部菌株为同一脉冲场凝胶电泳(PFGE)克隆群,且多位点序列分型(MLST)优势基因型为ST2. 结论 云南昆明第三人民医院ICU病房可能存在ST2多耐产碳青霉烯酶A. baumanni院内感染流行,有必要进行进一步流行病学及临床深入调查.防控措施及合理使用抗生素是当地医院当务之急.
关键词鲍曼不动杆菌    多重耐药    耐药基因    分子流行病学    
Molecular characterization of multi-drug-resistant Acinetobacter baumannii isolated from patients in a hospital in Yunnan
TAN Hong-li1, CHENG Xue-qin2, WANG Yong2,3, HUANG Yan-mei1, LIU Wei2, ZHANG Li-juan2     
1. Department of Clinical Microbiology Laboratory, the Third People's Hospital of Yunnan Province, Kunming 650011, Yunnan, China;
2. Institute for Communicable Disease Prevention and Control, Chinese Center for Disease Control and Prevention, Beijing 102206, China;
3. College of Animal Science & Technology, Shihezi University, Shihezi 832003, Xinjiang, China
Abstract:Objective To analyze phenotypes and genotypes of Acinetobacter baumannii isolated from ICU patients in a hospital in Kunming, Yunnan province. Methods A total of 28 A. baumannii strains were isolated from the patients in this hospital, and the strains were identified and their susceptibilities to 21 antibiotics were tested by using the bioMe'rieux VITEK-2 system. PCR screening and sequencing was performed to identify β-lactamase genes, fluoroquinolone resistance related genes, aminoglycoside resistance related genes and gene capturing elements. Pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST) were conducted to analyze the genetic relationships among the isolates. Results Among the strains isolated, 78.6% were MDR, 14.3% were XDR and 7.1% were PDR. All the isolates were resistant not only to 1st and 2nd generation cephalosporins and most 3rd and 4th generation cephalosporins (ceftriaxone, ceftazidime and cefepime), but also to monobactams (aztreonam), quinolones (ciprofloxacin and levofloxacin), aminoglycosides (kanamycin) and nitrofurantoin (furadantin). All the isolates co-carried blaOXA genes, quinolone resistance related gene-aac(6')-Ib-cr, aminoglycosides resistance related gene-aacA4 and gene capturing element-int 1. Phylogenetic analyses by PFGE revealed that all the isolates were in one clad. Conclusion MDR A. baumannii possessing blaOXA, aac(6')-Ib-cr, and aacA4 might circulate in this hospital, it is necessary to conduct further clinical and epidemiological survey, take effective control measures and use antibiotics rationally.
Key words: A. baumannii    Multi-drug resistance    Resistance related gene    molecular epidemiological characteristics    

鲍曼不动杆菌(Acinetobacter baumannii)院内感染是当前全球范围内面临的巨大挑战。该菌的耐药尤其是多耐、泛耐菌株的出现与快速播散给临床治疗带来极大困难[1]。2000年以来,云南省第三人民医院检验科发现,多重耐药鲍曼不动杆菌分离率不断增加。临床及流行病学调查发现,菌株分离患者均符合院内感染(health care-associated,HA)标准[2]。为分析该菌分子流行病学特征、预防控制院内感染暴发流行,中国疾病预防控制中心(CDC)传染病预防控制所与云南省第三人民医院合作进行了鲍曼不动杆菌耐药表型及耐药基因分子流行病学分析。

1 材料与方法 1.1 菌株

2013年69月,云南省第三人民医院入住重症监护室(ICU)48 h后院内感染患者分离的鲍曼不动杆菌28株。其中,22株分离于痰标本、4株来自尿标本、2株来自分泌物。平均年龄70.4岁(27.0~93.0岁)。男女性别比为6∶1(24/4)。患者均来自全省范围内到昆明就诊住院患者。

1.2 菌株鉴定及药物敏感性鉴定

法国梅里埃全自动微生物分析仪(bioMerieux VITEK-2 system)进行菌株鉴定及药物敏感分析。细菌鉴定卡及药敏卡均为法国梅里埃公司提供。菌种鉴定进一步采用原核细菌16 SrRNA基因扩增及测序分析完成[3]。多耐菌(multi-drug-resistant,MDR)、广泛耐药菌(extensively drug-resistant,XDR)及泛耐药菌(pandrug-resistant,PDR)等按国际标准分类[4]

1.3 耐药基因分子流行病学分析

聚合酶链反应(PCR)扩增包括超广谱β-内酰胺酶bla基因、氟喹诺酮类及氨基糖苷类抗生素耐药基因、IS插入元件及整合子等。扩增引物及反应条件见表 1参考文献。引物由北京赛百盛生物技术有限公司合成。细菌质粒提取用百泰克生物技术有限公司试剂盒(Cat No.DP1002)。DNA提取用德国 QIAGEN试剂(Cat No. 69506)。PCR产物送北京擎科生物技术有限公司双向测序,采用NCBI网站Blast平台进行序列同源比较。

表1 PCR扩增耐药基因及基因捕获元件等所需引物信息 Table 1 Primers used in amplification for resistance related genes and gene capturing elements
目标基因引物名称引物序列(5′~3′)片段大小(bp)参考文献
β-内酰胺类
TEMTEM-FTCC GCT CAT GAG ACA ATA ACC931[5]
TEM-RTTG GTC TGA CAG TTA CCA ATG C
SHVSHV-FTGG TTA TGC GTT ATA TTC GCC868[5]
SHV-RGGT TAG CGT TGC CAG TGC T
CTX-MCTX-FTCT TCC AGA ATA AGG AAT CCC909[5]
CTX-RCCG TTT CCG CTA TTA CAA AC
VEBVEB-F1GAT AGG AGT ACA GAC ATA TG 914[5]
VEB-R1TTT ATT CAA ATA GTA ATT CCA CG
PERPER-FATG AAT GTC ATC ACA AAA TG 927[5]
PER-RTCA ATC CGG ACT CAC T
GESGES-FATG CGC TTC ATT CAC GCA C 864[5]
GES-RCTA TTT GTC CGT GCT CAG G
KPCKPC-FATG TCA CTG TAT CGC CGT CT882[6]
KPC-RTTT TCA GAG CCT TAC TGC
NDMNDM-FGGT TTG GCG ATC TGG TTT TC621[6]
NDM-RCGG AAT GGC TCA TCA CGA
IMPIMP-FGGA ATA GAG TGG CTT AAT TCT C624[6]
IMP-RCCA AAC CAC TAC GTT ATC
VIMVIM-FGGT CTC ATT GTC CGT GAT GGT GAT GAG271[6]
VIM-RCTC GAT GAG AGT CCT TCT AGA G
CMYCMY-FTGG CCA GAA CTG ACA GGC AAA462[6]
CMY-RTTT CTC CTG AAC GTG GCT GGC
DHADHA-FAAC TTT CAC AGG TGT GCT GGG T405[6]
DHA-RCCG TAC GCA TAC TGG CTT TGC
FOXFOX-FAAC ATG GGG TAT CAG GGA GAT G190[6]
FOX-RCAA AGC GCG TAA CCG GAT TGG
OXA OXA-2-FAAG AAA CGC TAC TCG CCT GC 478[5]
OXA-2-RCCA CTC AAC CCA TCC TAC CC
OXA-10-FGTC TTT CGA GTA CGG CAT TA 720[5]
OXA-10-RATT TTC TTA GCG GCA ACT TAC
OXA-23-FGAT CGG ATT GGA GAA CCA GA[7]
OXA-23-RATT TCT GAC CGC ATT TCC AT
OXA-24-FGGT TAG TTG GCC CCC TTA AA[7]
OXA-24-RAGT TGA GCG AAA AGG GGA TT
OXA-51-FTAA TGC TTT GAT CGG CCT TG[7]
OXA-51-RTGG ATT GCA CTT CAT CTT GG
OXA-48-FTTG GTG GCA TCG ATT ATC GG743[7]
OXA-48-RGAG CAC TTC TTT TGT GAT GGC
OXA-58-FAAG TAT TGG GGC TTG TGC TG[7]
OXA-58-RCCC CTC TGC GCT CTA CAT AC
氟喹诺酮类
qnrAqnrA-FATT TCT CAC GCC AGG ATT TG 627[6]
qnrA-RGAT CGG CAA AGG TTA GGT CA
qnrBqnrB-F GAT CGT GAA AGC CAG AAA GG 469[6]
qnrB-RACG ATG CCT GGT AGT TGT CC
qnrCqnrC-FGGG TTG TAC ATT TAT TGA ATC G 307[6]
qnrC-RCAC CTA CCC ATT TAT TTT CA
qnrDqnrD-F CGA GAT CAA TTTA CGG GGA ATA 533[6]
qnrD-R AAC AAG CTG AAG CGC CTG 533
qnrSqnrS-FACG ACA TTC GTC AAC TGC AA 417[6]
qnrS-RTAA ATT GGC ACC CTG TAG GC
aac(6′) -Ib-craac(6′) -Ib-cr -FTTG CGA TGC TCT ATG AGT GGC TA482[6]
aac(6′) -Ib-cr -RCTC GAA TGC CTG GCG TGT TT
qepAqepA-F AAC TGC TTG AGC CCG TAG AT 596[6]
qepA-RGTC TAC GCC ATG GAC CTC AC
gyrA突变gyrA-FCGA CCT TGC GAG AGA AAT626[6]
gyrA-R GTT CCA TCA GCC CTT CAA
氨基糖苷类
aacA4aacA4-FATG ACT GAG CAT GAC CTT GCG 540[6]
aacA4-RTTA GGC ATC ACT GCG TGT TCG
aacC1aacC1-FATG GGC ATC ATT CGC ACA TGT AGG 873[6]
aacC1-RTTA GGT GGC GGT ACT TGG GTC
aacC2aacC2-FATG CAT ACG CGG AAG GCA ATA AC 861[6]
aacC2-RCTA ACC GGA AGG CTC GCA AG
aadA1aadA1-FATG AGG GAA GCG GTG ATC G 792[6]
aadA1-RTTA TTT GCC GAC TAC CTT GGT G
aadBaadB-FATG GAC ACA ACG CAG GTC GC 534[6]
aadB-RTTA GGC CGC ATA TCG CGA CC
aphA6aphA6-FATG GAA TTG CCC AAT ATT ATT C 781[6]
aphA6-RTCA ATT CAA TTC ATC AAG TTT TA
插入元件/整合子
int1int 1FCCT CCC GCA CGA TGA TC280[8]
int 1RTCC ACG CAT CGT CAG GC
ISCR1CR1FATG TCT CTG GCA AGG AAC GC1450[8]
CR1RAGA CGA CTC TGT GAT GGA TC
ISEcp1IS-FGTG CCC AAG GGG AGT GTA TG615[5]
IS-RACY TTA CTG GTR CTG CAC AT
1.4 多位点序列分型(MLST )和脉冲场凝胶电泳(PFGE)

为分析遗传变异关系,试验菌株进行了MLST及PFGE分型。MLST引物、操作及MLST 序列型(STs)分析见www.pasteur.fr/mlst网站。MLST分型使用7个基因包括cpn60、fusA、gltA、pyrG、recA、rplB、rpoB。PFGE采用CHEF Mapper XA脉冲场电泳仪(Bio-Rad Laboratories,Hercules,CA)按参考方法进行[9],PFGE带型分析使用Fingerprinting Ⅱ软件(version 3.0,Bio-Rad Laboratories,Hercules,CA),相似性大于80%归为一簇。

1.5 统计学分析

应用SPSS 软件(version 9.1,SAS Institute,Inc.,Cary,NC) 进行统计分析。变量间比较用χ2检验。P<0.05为差异有统计学意义。

2 结果 2.1 耐药分析

细菌耐药结果见表 2。本次检测的鲍曼不动杆菌按耐药分类标准,78.6%(22/28)菌株为MDR,14.3%(4/28)菌株为广泛耐药菌(XDR),7.1%为泛耐药菌(PDR)。100%菌株不仅对一代/二代头孢类抗生素耐药,且对三代/四代抗生素CRO、CAZ、 FEP及单环β-内酰胺类(ATM)、氟喹诺酮类(CIP、LEV)、氨基糖苷类(AN)及磺胺类(FD)等耐药。值得注意的是92.9%菌株对碳青霉烯类抗生素耐药。

表2 实验菌株药物敏感性试验结果 Table 2 Antibiotic susceptibility test results for strains isolated
注:(1)S:敏感菌株; I:中介耐药菌株; R:耐药菌株。
分类抗生素 名称细菌耐药及敏感率(%)(1)
SIR
氨苄西林AMP0.00.0100.0
羧苄青霉素+ β-内酰胺抑制剂TZP0.07.192.9
青霉素+β-内酰胺抑制剂SAM7.150.042.9
一代/二代头孢霉素CXM0.00.0100.0
CFZ0.00.0100.0
三代/四代头孢霉素CRO0.00.0100.0
CAZ0.00.0100.0
SCF35.757.17.1
FEP0.00.0100.0
头孢霉素CTT0.014.385.7
碳青霉烯类ETP7.10.092.9
MEM7.10.092.9
IMP7.10.092.9
单环β-内酰胺类ATM0.00.0100.0
氟喹诺酮类CIP0.00.0100.0
LEV0.00.0100.0
氨基糖苷类GM7.10.092.9
TM7.114.378.6
AN0.00.0100.0
叶酸代谢途径抑制剂SXT14.30.085.7
磺胺类FD0.00.0100.0
2.2 耐药基因型

以质粒及基因组DNA模板,PCR扩增及序列分析显示,除了blaOXA 基因外,其他β-内酰胺类耐药基因(表 2)均为阴性。在质粒介导的blaOXA 阳性菌株中,64.3%(18/28)菌株为复合携带blaOXA-2/23/48/51/58基因。7.1%(2/28) 菌株携带bla OXA-2 /-48/-51/-58基因 ,7.1%(2/28) 菌株携带blaOXA-2 /-23/-48/-51基因 ,7.1%(2/28) 菌株携带bla OXA-2 /-23/-51基因。14.3%(4/28) 菌株单一携带blaOXA-51 基因。7种氟喹诺酮类抗性基因检测发现,100%菌株携带 aac(6’)-Ib-cr,85.7%菌株携带qnrA,78.6%菌株携带 qnrD。其他4种基因包括qnrB、qnrC、qnrS和qepA没有检测到,也没有检测到gyrA突变。6种氨基糖苷类抗性基因检测发现,100%菌株携带aacA4,85.7%菌株携带aadA1,7.1%菌株携带aacC2,没有检测到aacC1、aadB 和aphA6。移动元件及整合子检测发现100%菌株携带int1,85.7%菌株携带ISCR1。没有检测到ISEcp1。

2.3 MLST及PFGE分型特征

使用7个保守基因包括cpn60、fusA、gltA、pyrG、recA、rplB、rpoB 进行MLST分型,结果提示,同欧洲地区流行株分布极为相似,ST2为优势序列型,占85.7%。与GenBank收录的12个全基因组比较并进化分析,结果本试验菌株与我国天津鲍曼不动杆菌MDR-TJ关系密切[10]。此外还检测到ST5及ST6,分别占7.1%。PFGE结果显示所有分型成功菌株按聚类分析标准(>80%相似性为一群)为同一克隆群,见图 1

图 1 代表性菌株PFGE聚类分析 Fig. 1 PFGE pattern and drug-resistant genotype of isolates
3 讨论

多耐鲍曼不动杆菌院内感染暴发已经成为当今世界重大的公共卫生问题,尤其是临床ICU重症患者感染后病死率高达30%[11]。本研究实验菌株来自同一医院不同ICU病房,均符合院内感染标准并证实全部菌株呈现多重耐药,尤其是92.9%菌株对3种试验碳青霉烯类抗生素全部耐药。除MDR菌株(78.6%)外,还出现了XDR(14.3%)及PDR(7.1%)菌株。特别值得注意的是这些不同ICU病房的高度耐药菌株遗传进化关系属于同一PFGE克隆群(图 1),提示当地医院可能存在有碳青霉烯酶多耐鲍曼不动 杆菌院内感染流行,有待深入流行学及临床调查。ST2序列型为欧洲地区主要流行株,在意大利、希腊频繁暴发院内感染事件[12,13],近年在亚洲中东地区及北非地区也时有报道[14,15,16]。这一分子流行病学结果进一步为临床院内感染提供了分子遗传学证据。流行株耐药基因主要包括质粒介导的D类β-内酰胺类抗性基因-OXA、氟喹诺酮类[aac(6’)-Ib-cr、 qnrA 及qnrD]以及氨基糖苷类(aacA4、 aadA1及 aacC2)。D类β-内酰胺类抗性基因是近年发现并呈全球分布,该类基因不仅水解广谱头孢菌素,而且与碳青霉烯类抗生素抗性密切相关。最新研究证实,世界范围内有8群blaOXA基因[17]。本研究全部菌株携带该类基因,并表现高度复合携带状态(图 1)。100%菌株携带blaOXA-51,85.7%菌株复合携带多种blaOXA基因,blaOXA-2/23/48/51/58复合携带菌株占64.3%。除了世界范围内广泛分布的blaOXA-23[1],78.6%菌株还检测到最新发现的blaOXA-48基因。我国流行株主要携带blaOXA-23基因 [18,19,20],近年blaOXA-51blaOXA-58也屡见报道[21,22],并且存在blaOXA-23 和其他blaOXA基因复合携带状况[21,23,24]。本试验菌株不仅复合携带多种blaOXA基因,而且大多数菌株还复合携带氟喹诺酮类及氨基糖苷类多种基因。

本试验100%菌株携带整合酶基因int 1,85.7%菌株携带ISCR1。这一分子遗传学结果与耐药表型高度一致,也进一步提示当地细菌多重耐药及快速传播扩散与这些基因捕获元件密切相关[25]。 ISEcp1插入元件位于blaCTX-M基因上游,发挥启动子作用。本试验没有检测到blaCTX-M基因及相关的ISEcp1插入元件。

本研究结果提示当地医院ST2型多重耐药产碳青霉烯酶鲍曼不动杆菌正在流行,对ICU重症患者治疗构成严重威胁,进一步开展详细的流行病学调查和采取必要的防控措施及合理应用抗生素是当务之急。

参考文献
[1] Peleg AY, Seifert H, Paterson DL. Acinetobacter baumannii:Emergence of a successful pathogen[J]. Clin Micrbio Rev,2008,21(3):538-582.
[2] Apisarnthanarak A, Kiratisin P, Saifon P, et al. Risk factors for and outcomes of healthcare-associated infection due to extended-spectrum beta-lactamase-producing Escherichia coli or Klebsiella pneumoniae in Thailand[J]. Infect Control Hosp Epidemiol,2007,28(7):873-876.
[3] Weisburg WG, Barns SM, Peleetier DA, et al. 16S ribosomal DNA amplification for phylogenetic study[J]. J Bacteriol,1991,173(2):697-703.
[4] Magiorakos AP, Srinivasan A, Carey RB, et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria:an international expert proposal for interim standard definitions for acquired resistance[J]. Clin Microbiol Infect,2012,18(3):268-281.
[5] Kiratisin P, Apisarnthanarak A, Laesripa C, et al. Molecular characterization and epidemiology of extended-spectrum-lactamase-producing Escherichia coli and Klebsiella pneumoniae isolates causing health care-associated infection in Thailand, where the CTX-M family is endemic[J]. Antimicrob Agents Chemother,2008,52(8):2818-2824.
[6] Li B, Yi Y, Wang Q, et al. Analysis of drug resistance determinants in Klebsiella pneumoniae isolates from a tertiary-care hospital in Beijing, China[J]. PLoS One,2012,7:e42280.
[7] Woodford N, Ellington MJ, Coelho JM, et al. Multiplex PCR for genes encoding prevalent OXA carbapenemases in Acinetobacter spp[J]. Int J Antimicrob Agents,2006,27(4), 351-353.
[8] Chen X, Yuan M, Li GX, et al. Dissemination of int1 gene and ISCR1 and their relations with multi-drug resistance in clinical isolates[J]. Chin J Znoonoses,2013,29(7):646-652.
[9] Mugnier PD, Poirel L, Naas T, et al. Worldwide dissemination of the blaOXA-23 carbapenemase gene of Acinetobacter baumannii[J]. Emerg Infect Dis,2010,16(1):35-40.
[10] Huang H, Yang ZL, Wu XM,et al. Complete genome sequence of Acinetobacter baumannii MDR-TJ and insights into its mechanism of antibiotic resistance[J].J Antimicrob Chemother,2012,67(12):2825-2832.
[11] Wilson SJ, Knipe CJ, Zieger MJ, et al. Direct costs of multidrug-resistant Acinetobacter baumannii in the burn unit of a public teaching hospital[J]. Am J Infect Control,2004,32(6):342-344.
[12] Agodi A, Voulgari E, Barchitta M,et al. Spread of a carbapenem-and colistin-resistant Acinetobacter baumannii ST2 clonal strain causing outbreaks in two Sicilian hospitals[J]. J Hosp Infect,2014,86(4):260-266.
[13] Villar M, Cano ME, Gato E,et al. Epidemiologic and clinical impact of Acinetobacter baumannii colonization and infection:a reappraisal[J].Medicine (Baltimore),2014,93(5):202-210.
[14] Bakour S, Alsharapy SA, Touati A,et al. Characterization of Acinetobacter baumannii clinical isolates carrying blaOXA-23 carbapenemase and 16S rRNA methylase armA genes in Yemen[J]. Microb Drug Resist,2014,[Epub ahead of print].
[15] Hojabri Z, Pajand O, Bonura C,et al. Molecular epidemiology of Acinetobacter baumannii in Iran:endemic and epidemic spread of multiresistant isolates[J]. J Antimicrob Chemother,2014,69(9):2383-2387.
[16] Bakour S, Touati A, Bachiri T,et al. First report of 16S rRNA methylase ArmA-producing Acinetobacter baumannii and rapid spread of metallo-β-lactamase NDM-1 in Algerian hospitals[J]. J Infect Chemother,2014,[Epub ahead of print].
[17] Walther-Rasmussen J,Hoiby N. OXA-type carbapenemases[J]. J Antimicrob Chemother,2006,57(3):373-383.
[18] Zhao WS, Liu GY, Mi ZH,et al. Coexistence of blaOXA-23 with armA and novel gyrA mutation in a pandrug-resistant Acinetobacter baumannii isolate from the blood of a patient with haematological disease in China[J]. J Hosp Infect,2011,77(3):278-279.
[19] Dai XT, Sun FJ, Chen ZH,et al. The Epidemiology and resistance mechanisms of Acinetobacter baumannii isolates from the respiratory department ICU of a hospital in China[J].Microb Drug Resist,2014,[Epub ahead of print].
[20] He C, Xie Y, Zhang L, et al. Increasing imipenem resistance and dissemination of the ISAba1-associated blaOXA-23 gene among Acinetobacter baumannii isolates in an intensive care unit[J].J Med Microbiol,2011,60(Pt 3):337-341.
[21] Ho CM, Ho MW, Chi CY,et al. Repeated colonization by multi-drug-resistant Acinetobacter calcoaceticus-A. baumannii complex and changes in antimicrobial susceptibilities in surgical intensive care units[J]. Surg Infect (Larchmt),2013,14(1):43-48.
[22] Fu Y, Jiang J, Zhou H, et al. Characterization of a novel plasmid type and various genetic contexts of blaOXA-58 in Acinetobacter spp. from multiple cities in China[J].PLoS One,2014,9(1):e84680.
[23] Zhou H, Pi BR, Yang Q, et al. Dissemination of imipenem-resistant Acinetobacter baumannii strains carrying the ISAba1blaOXA-23 genes in a Chinese hospital[J]. J Med Microbiol,2007,56(Pt 8):1076-1080.
[24] Zhou H, Du XX, Yang Q,et al. Study on carbapenemase and 16S rRNA methylase of imipenem-resistant Acinetobacter baumannii[J].Chin J Epidemiol,2009,30(3):269-272.
[25] Marque S, Poirel L, Heritier C, et al. Regional occurrence of plasmid mediated carbapenem-hydrolyzing oxacillinase OXA-58 in Acinetobacter spp. in Europe[J]. J Clin Microbiol,2005,43(9):4885-4888.