扩展功能
文章信息
- 刘志广, 孙庆, 刘海灿, 肖彤洋, 赵秀芹, 万康林, 赵丽丽
- LIU Zhi-guang, SUN Qing, LIU Hai-can, XIAO Tong-yang, ZHAO Xiu-qin, WAN Kang-lin, ZHAO Li-li
- 耐多药结核分枝杆菌中embB基因突变与乙胺丁醇耐药的相关性研究
- Association between embB mutation of multidrug-resistant Mycobacterium tuberculosis and its ethambutol resistance
- 疾病监测, 2015, 30(4): 321-324
- Disease Surveillance, 2015, 30(4): 321-324
- 10.3784/j.issn.1003-9961.2015.04.018
-
文章历史
- 收稿日期:2015-01-27
2. 感染性疾病诊治协同创新中心, 浙江 杭州 310003;
3. 南华大学病原生物研究所, 湖南 衡阳 421001
2. Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou 310003, Zhejiang, China;
3. Pathogenic Biology Institute, University of South China, Hengyang, 421001, Hunan, China
我国是世界上结核病高发国家之一,耐药结核病尤其是耐多药结核病(结核分枝杆菌至少耐异烟肼和利福平)流行情况较为严重。据最近的耐药基线调查数据显示:我国肺结核患者中耐多药率为8.32%[1];据此估算,我国每年新发12万例耐多药结核病患者。耐多药结核病的出现和蔓延已严重阻碍了我国结核病防治工作的进程。
乙胺丁醇(EMB)是一种具有广谱抗分枝杆菌活性的一线抗结核药物,现被广泛用于耐多药结核病的治疗。但以往的研究表明:在我国的某些地区,51.3%~66.7%的耐多药结核同时表现EMB的耐药性[2, 3, 4];因此,建立快速、准确的EMB检测方法对于选择有效的结核治疗方案至关重要,而了解EMB耐药相关基因的突变特征可为建立快速诊断方法提供分子基础。
EMB的耐药主要与embB基因突变有关,其中embB306是主要的突变位点[4,5,6,7]。但也有文献表明:EMB敏感菌株中也可发生embB基因突变[,7,8,9]。因此,embB基因突变与EMB耐药的关系仍有待于进一步确认。本研究通过对84株耐多药结核分枝杆菌进行embB基因突变特征的分析,探讨其与EMB耐药的关系,进而评估embB基因用于快速药敏诊断的价值。
1 材料与方法 1.1 菌株本实验所用的84株耐多药结核分枝杆菌均由中国疾病预防控制中心传染病预防控制所结核病室传代,培养和保藏。
1.2 药敏试验 1.2.1 药敏培养基的制备含药培养基为普通罗氏培养基加入不同的药物(购自美国Sigma公司),使其终浓度分别为异烟肼0.2 μg/ml,利福平40 μg/ml和乙胺丁醇2.0 μg/ml[10];对照培养基为普通罗氏培养基。
1.2.2 菌悬液的制备刮取罗氏培养基上的新鲜培养物置于含玻璃珠的无菌小瓶内,加入适量生理盐水,漩涡振荡几秒钟,以0.5%吐温-80生理盐水配成1个麦氏比浊浓度,并用生理盐水稀释至10-2 mg/ml和10-4 mg/ml的菌悬液。
1.2.3 接种及孵育取稀释好的菌悬液分别接种于对照和含药培养基,37 ℃培养4周,观察菌落生长情况。
1.2.4 结果判定根据耐药百分比判别:耐药百分比=(含药培养基的菌落数/对照培养基的菌落数)×100%,若耐药百分比>1%为耐药(R),≤1%为敏感(S)。
1.3 DNA模板的制备采用CTAB (hexadecyl trimethyl ammonium bromide)法提取结核分枝杆菌基因组DNA[11],具体如下:生理盐水收集结核分枝杆菌新鲜培养物50~100 mg(湿重),用溶菌酶,10%SDS/蛋白酶K混合液及CTAB破除细胞壁,去除蛋白,脂类等物质,然后用氯仿萃取,冰乙醇洗涤DNA沉淀,最后用TE溶解DNA沉淀,-20 ℃保存。
1.4 聚合酶链反应及序列测定聚合酶链反应(polymerase chain reaction,PCR)用引物为:emb-F:5′-AAC TTC GTC GGG CTC AAG-3′和emb-R:5′-TAA CGC AGG TTC TCG GTA TA-3′。PCR反应体系总体积为20 μl,其中,2×Taq PCR MasterMix 10 μl(TIANGEN),DNA模板 1 μl(50 ng),emb-F (20 mmol/L) 1 μl,emb-R(20 mmol/L) 1 μl,无菌双蒸水7 μl。PCR反应条件为95 ℃预变性5 min,94 ℃ 变性30 s,60 ℃退火30 s,72 ℃延伸45 s,35个循环后,72 ℃ 延伸5 min,PCR产物经1.5%的琼脂糖凝胶电泳检测后送北京擎科生物有限公司测序,测序结果用BioEdit 7.05.3软件与H37Rv序列(GenBank序列号:NC_000962)进行比对分析。
1.5 统计学分析采用SPSS 16.0 统计软件分析数据,χ2检验进行数据的比较,P<0.05表明差异有统计学意义。
2 结果 2.1 药敏检测结果84株耐多药结核分枝杆菌中有43株对EMB耐药,41株对EMB敏感,EMB的耐药率为51.2%。
2.2 PCR测序结果84株耐多药结核分枝杆菌中共有57株菌(67.9%)的embB基因发生突变(表1),其中有1株菌为双位点突变,其余56株菌均为单位点突变。
embB | 耐多药菌株(n=84) | |
EMB耐药 (n=43) | EMB敏感 (n=41) | |
Met306Ile | 10 | 3 |
Met306Ile/Gly406Ser | 1 | 0 |
Met306Leu | 0 | 2 |
Met306Val | 17 | 6 |
Tyr319Asp | 1 | 0 |
Tyr319Cys | 1 | 0 |
Asp328Tyr | 1 | 0 |
Asp354Ala | 1 | 1 |
Asn399Thr | 1 | 0 |
Gly406Ala | 1 | 1 |
Gly406Asp | 1 | 2 |
Gly406Ser | 2 | 0 |
Gln497Arg | 0 | 1 |
Gln497Lys | 2 | 1 |
Gln497Pro | 1 | 0 |
43株EMB耐药菌株中有40株菌(93.0%)的embB基因发生突变,41株敏感菌株中有17株菌(41.5%)的embB基因发生突变,耐药菌株中embB基因的突变频率远高于敏感菌株(χ2=25.58,P=0.00)。
耐药菌株中常见的突变位点为embB306(28株,65.1%),406(5株,11.6%)和497(3株,7.0%),此外,还可见embB319,328,354和399位点的突变;敏感菌株中的主要突变位点是embB306(11株,26.8%)和406(3株,7.3%),还发现有embB319,354和497位点的突变。其中,embB306在耐药菌株中的突变率远高于敏感菌株(χ2=12.37,P=0.00)。
2.3 embB基因测序与药敏结果的比较与比例法药敏结果相比,embB基因测序检测embB耐药的敏感度为93.0%,特异度为58.5%,两种方法的一致率为76.2%(表2)。
embB基因 | EMB药敏结果 | 敏感度(%) | 特异度(%) | 一致率(%) | |
耐药 | 敏感 | ||||
突变 | 40 | 17 | 93.0 | 58.5 | 76.2 |
未突变 | 3 | 24 |
与比例法药敏结果相比,embB306突变检测embB耐药的敏感度为65.1%,特异度为73.2%,两种方法的一致率为69.0%(表3)。
embB306 | EMB药敏结果 | 敏感度(%) | 特异度(%) | 一致率(%) | |
耐药 | 敏感 | ||||
突变 | 28 | 11 | 65.1 | 73.2 | 69.0 |
未突变 | 15 | 30 |
作为一种重要的耐多药结核治疗药物,EMB在耐多药结核的耐药率值得关注。我们的研究表明:51.2%的耐多药结核呈现EMB耐药,提示在应用EMB治疗耐多药结核时,必需首先检测菌株对EMB的耐药性。
EMB的耐药机制主要与阿拉伯糖基转移酶的抑制有关,该酶能影响细菌细胞壁分枝菌酸-阿拉伯半乳聚糖-肽聚糖复合物的形成[8, 9, 10, 11, 12],其编码基因embB突变与EMB耐药密切相关。embB突变主要集中在密码子300~500的区域[4, 5, 6, 7, 13, 14, 15],本文也主要研究了该区域的突变,结果显示:在耐多药结核分枝杆菌中,93.0%的EMB耐药菌株和41.5%的敏感菌株均可检测到embB基因的突变;embB306是主要的突变位点,其在耐药菌株和敏感菌株的突变率分别是65.1%和26.8%,差异具有统计学意义,表明embB基因和embB306位点的突变均与EMB耐药有关,与前期报道基本一致[5, 6, 16]。
EMB耐药菌株中,还可见embB319、328、354、399、406和497位点的突变,其中embB354、406和497位点的突变也发生于敏感菌株,只有embB319、328和399的突变仅发生在耐药菌株,其中的机制有待于进一步研究;此外,还有3株EMB耐药菌株未见embB基因的突变,推测可能有其他机制比如embA、embC和embR等参与EMB耐药的形成[17]。
有文献指出:embB基因和embB306位点可用于EMB耐药结核的快速诊断[7,18];我们的结果显示:embB基因和embB306位点检测EMB耐药的敏感度、特异度和准确性分别为98.0%和65.1%,58.5%和73.2%,76.2%和69.0%,提示embB基因和embB306位点的检测在EMB耐药的判断方面有一定的参考价值。
综上所述,EMB在耐多药结核中具有较高的耐药率,其耐药的产生与embB基因突变有关,embB306是主要的突变位点,二者对于检测EMB耐药有一定的参考意义。
[1] | Zhao YL, Xu SF, Wang LX, et al. National survey of drug-resistant tuberculosis in China[J]. N Engl J Med,2012,366: 2161-2170. |
[2] | Zhang ZJ, Wang YF, Pang Y, et al. Ethambutol resistance as determined by broth dilution method correlates better than sequencing results with embB mutations in multidrug-resistant Mycobacterium tuberculosis isolates[J]. J Clin Microbiol,2013,52(2):638-641. |
[3] | Chen QY, Pang Y, Liang QF, et al. Molecular characteristics of MDR Mycobacterium tuberculosis strains isolated in Fujian, China[J]. Tuberculosis(Edinb),2014,94(2):159-161. |
[4] | Shi DW, Li L, Zhao YL, et al. Characteristics of embB mutations in multidrug-resistant Mycobacterium tuberculosis isolates in Henan, China[J]. J Antimicrob Chemother,2011,66(10):2240-2247. |
[5] | Plinke C, Cox HS, Zarkua N, et al. embCAB sequence variation among ethambutol-resistant Mycobacterium tuberculosis isolates without embB306 mutation[J]. J Antimicrob Chemother,2010,65(7):1359-1367. |
[6] | Safi H, Fleischmann RD, Peterson SN, et al. Allelic exchange and mutant selection demonstrate that common clinical embCAB gene mutations only modestly increase resistance to ethambutol in Mycobacterium tuberculosis[J]. Antimicrob Agents Chemother,2010,54(1):103-108. |
[7] | Campbell PJ, Morlock GP, Sikes RD, et al. Molecular detection of mutations associated with first-and second-line drug resistance compared with conventional drug susceptibility testing of Mycobacterium tuberculosis[J]. Antimicrob Agents Chemother,2011,55(5):2032-2041. |
[8] | Mokrousov I, Otten T, Vyshnevskiy B, et al. Detection of embB306 mutations in ethambutol-susceptible clinical isolates of Mycobacterium tuberculosis from Northwestern Russia: implications for genotypic resistance testing[J]. J Clin Microbiol,2002,40(10):3810-3813. |
[9] | Brossier F, Veziris N, Aubry A, et al. Detection by GenoType MTBDRsl test of complex mechanisms of resistance to second-line drugs and ethambutol in multidrug-resistant Mycobacterium tuberculosis complex isolates[J]. J Clin Microbiol,2010,48(5):1683-1689. |
[10] | WHO. Policy guidance on TB drug susceptibility testing(DST) of second-line antituberculosis drugs[R]. Geneva, Switzerland: WHO,2008. |
[11] | Somerville W, Thibert L, Schwartzman K, et al. Extraction of Mycobacterium tuberculosis DNA: a question of containment[J]. J Clin Microbiol,2005,43(6):2996-2997. |
[12] | Telenti A, Philipp WJ, Sreevatsan S, et al. The emb operon, a gene cluster of Mycobacterium tuberculosis involved in resistance to ethambutol[J]. Nat Med,1997,3(5):567-570. |
[13] | Sekiguchi J, Miyoshi-Akiyama T, Augustynowicz-Kope E, et al. Detection of multidrug resistance in Mycobacterium tuberculosis[J]. J Clin Microbiol,2007,45(1):179-192. |
[14] | Jadaun GPS, Das R, Upadhyay P, et al. Role of embCAB gene mutations in ethambutol resistance in Mycobacterium tuberculosis isolates from India[J]. Int J Antimicrob Agents,2009,33(5):483-486. |
[15] | Bakua Z, Napiórkowska A, Bielecki J, et al. Mutations in the embB gene and their association with ethambutol resistance in multidrug-resistant Mycobacterium tuberculosis clinical isolates from Poland[J]. Biomed Res Int,2013,2013: 167954-167958. |
[16] | Perdigão J, Macedo R, Ribeiro A, et al. Genetic characterisation of the ethambutol resistance-determining region in Mycobacterium tuberculosis: prevalence and significance of embB306 mutations[J]. Int J Antimicrob Agents,2009,33(4):334-338. |
[17] | Ramaswamy SV, Amin AG, Gksel S, et al. Molecular genetic analysis of nucleotide polymorphisms associated with ethambutol resistance in human isolates of Mycobacterium tuberculosis[J]. Antimicrob Agents Chemother,2000,44(2):326-336. |
[18] | Starks AM, Gumusboga A, Plikaytis BB, et al. Mutations at embB codon 306 are an important molecular indicator of ethambutol resistance in Mycobacterium tuberculosis[J]. Antimicrob Agents Chemother,2009,53(3):1061-1066. |