疾病监测  2018, Vol. 33 Issue (5): 428-432

扩展功能

文章信息

王怡倩, 付宝庆, 熊衍文, 叶长芸
Wang Yiqian, Fu Baoqing, Xiong Yanwen, Ye Changyun
某医院72株阴沟肠杆菌临床菌株分子型别与耐药特征分析
Molecular characteristics and antibiotic resistance of 72 clinical strains of Enterobacter cloacae isolated in a hospital
疾病监测, 2018, 33(5): 428-432
Disease Surveillance, 2018, 33(5): 428-432
10.3784/j.issn.1003-9961.2018.05.017

文章历史

收稿日期:2018-01-26
某医院72株阴沟肠杆菌临床菌株分子型别与耐药特征分析
王怡倩1, 付宝庆2, 熊衍文1, 叶长芸1     
1. 中国疾病预防控制中心传染病预防控制所, 传染病预防控制国家重点实验室, 北京 102206;
2. 大庆油田总医院检验科, 黑龙江 大庆 163000
摘要目的 分析72株阴沟肠杆菌临床菌株分子型别和耐药特征,为流行病学及临床研究提供参考依据。方法 通过热休克蛋白基因和肽指纹图谱进行分子分型;采用琼脂药敏纸片法分析耐药表型;利用PCR扩增法对20个耐药基因进行检测;运用SAS软件对数据进行统计学分析。结果 72株阴沟肠杆菌临床菌株分为2个分支9个基因群,以分支1(基因群Ⅲ、Ⅵ和Ⅷ)菌株为主(50株,69.4%)。临床菌株对一至三代头孢、氨苄西林/舒巴坦具有较高的耐药率,对另外9种抗生素较为敏感。共检测到8个耐药基因(mir-actdhashvtemctx-MqnrAqnrBqnrS)。通过组内统计学分析发现,各型别菌株的临床分布、耐药率和耐药基因携带率不完全相同,差异有统计学意义。结论 通过两种分型方法,阴沟肠杆菌临床菌株中存在优势型别,不同型别的菌株在耐药率和耐药基因携带率上存在差异。
关键词分子型别    药敏试验    耐药基因    
Molecular characteristics and antibiotic resistance of 72 clinical strains of Enterobacter cloacae isolated in a hospital
Wang Yiqian1, Fu Baoqing2, Xiong Yanwen1, Ye Changyun1     
1. State Key Laboratory of Communicable Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China;
2. Department of Clinical Laboratory, Daqing Oilfield General Hospital, Daqing 163000, Heilongjiang, China
This study was supported by the fund for National Key Science and Technology Project(No. 2013ZX10004-101)
Corresponding author: Ye Changyun, Email:yechangyun@icdc.cn.
Abstract: Objective To investigate the association between molecular characteristics and antibiotics resistance in clinical isolates of Enterobacter cloacae. Methods A total of 72 isolates of E. cloacae from a hospital were typed according to hsp60 gene sequence and peptide mass fingerprinting. The susceptibilities of the isolates to 14 antibiotics were tested with agar dilution method. Twenty antibiotic resistance related genes were analyzed by using PCR and sequenced. Results Based on hsp60 genotype and peptide mass fingerprinting analysis, 72 E. cloacae strains could be divided into 2 clades and 9 gene clusters, clade 1(gene cluster:Ⅲ, Ⅵ and Ⅷ)strains were predominant in all the clinical isolates(50 strains, 69.4%). Antibiotic susceptibility test showed that the isolates were resistant to cefazolin, cefuroxime, ceftriaxone, ceftazidime, ampicillin/sulbactam; but sensitive to cefepime, piperacillin/tazobactam, aminoglycoside and quinolone. Eight antibiotics resistance genes (mir-act , dha, shv, tem. ctx-M, qnrA, qnrBand qnrS) were detected. Conclusion Predominant genotype was detected in the clinical isolates of E. cloacae with two subtyping methods. There were significance differences in clinical distribution and antibiotic resistance among the E. cloacae strains with different genotypes.
Key words: Molecular characteristic     Antibiotics resistance     Drug resistance gene    

阴沟肠杆菌(Enterobacter cloacae)为革兰阴性杆菌,属于肠杆菌科肠杆菌属,对环境具有高度适应性,且易携带抗生素耐药基因,是院内感染的重要致病菌之一[1-3]。随着第三/四代头孢菌素、喹诺酮类和碳青霉烯类等抗菌药物的广泛使用,临床上阴沟肠杆菌多重耐药现象日趋严重[2-5]hsp60基因分型是阴沟肠杆菌研究的重要方法之一,可以将阴沟肠杆菌分为13个基因群(Ⅰ~ⅩⅢ)[1, 6-7]。肽指纹图谱(PMF)分型基于细菌全菌蛋白质鉴定和数据库搜索,将阴沟肠杆菌分为2个分支[8]。其中分支1菌株包括3个基因群(Ⅲ、Ⅵ和Ⅷ),分支2菌株包括7个基因群。目前国内尚无阴沟肠杆菌临床菌株2种分型方法与耐药特征的报道[4, 9]。本研究通过2种分型方法、药敏试验和耐药基因检测,对某医院2010-2013年收集的72株阴沟肠杆菌的分子型别和耐药特征进行了调查。

1 材料与方法 1.1 菌株信息

2010年8月至2013年12月某医院收集的72株阴沟肠杆菌临床菌株(排除同一患者、相同PFGE带型、耐药表型相同的重复菌株),共涉及4个年份7种标本类型21个科室。所有菌株用法国梅里埃公司API20E肠道菌鉴定试剂条和16S rDNA基因测序进行鉴定。质控菌株为阴沟肠杆菌ATCC13047、大肠埃希菌ATCC25922、金黄色葡萄球菌ATCC25923、铜绿假单胞菌ATCC27853。

1.2 hsp60基因分型和PMF分型

hsp60基因分型:根据参考文献设计引物[1],对阴沟肠杆菌菌株进行hsp60 基因片段扩增并测序。用SeqMan Ⅱ(DNAStar)和MEGA软件比对目的序列,并形成邻近进化树进行分型。PMF分型:对样品进行预处理,使用串联基质辅助激光吸/电离飞行时间质谱仪(MALDI-TOF/TOF)对细菌全菌蛋白进行数据采集和处理,通过本单位自主研发的MicroID软件进行鉴定和分型[8, 10]

1.3 药敏实验

采用K-B纸片琼脂扩散法进行。抗菌药物包括:头孢唑啉(CZO,30 μg)、头孢呋辛(CXM,30 μg)、头孢曲松(CRO,30 μg)、头孢他啶(CAZ,30 μg)、头孢吡肟(FEP,30 μg)、氨苄西林/舒巴坦(1:1)(AMS,10/10 μg)、哌拉西林/他唑巴坦(TZP,100/10 μg)、亚胺培南(IMP,10 μg)、美罗培南(MEM,10 μg)、庆大霉素(GEN,10 μg)、妥布霉素(TOB,10 μg)、阿米卡星(AMK,30 μg)、左氧氟沙星(LEV,5 μg)、环丙沙星(CIP,5 μg)。

1.4 耐药基因的检测

共检测20个耐药基因。产头孢菌素酶(AmpC酶)耐药基因:dnaaccmoxfoxmir-actlap[11-12];产超广谱β-内酰胺酶(ESBLs)耐药基因:ctx-Mtoho[13]temshvvebperges[11]。喹诺酮类耐药基因:qnrAqnrBqnrSqnrCqepA[14]

1.5 统计学分析

运用SAS统计学软件进行R×C χ2检验或Fisher确切概率检验,分析各型别对抗菌药物的耐药率及耐药基因携带率。

2 结果 2.1 阴沟肠杆菌临床菌株的分子分型及临床分布

根据 hsp60基因分型和PMF分型,72株临床菌株分为9个基因群和2个分支,见表 1。分支1包括基因群Ⅲ、Ⅵ和Ⅷ菌株,为优势型别(50,69.4%)。分支2包括其余6个基因群菌株(22,30.6%)。临床标本中未分离到基因群Ⅶ、Ⅹ、Ⅺ和Ⅻ菌株。

表 1 阴沟肠杆菌在临床标本中的分布 Table 1 Distribution of E. cloacae in clinical samples
分型方法 基因簇 构成比(%) 分离年份 标本来源 采集科室
hsp60 Ⅰ(6) 8.0 2012(4),2013(2) 痰液(4), 尿液(1), 血液(1) 神经外科⑵,儿科⑴, 其他⑶
Ⅱ(3) 4.0 2011(1), 2012(1), 2013(1) 痰液(2),胆汁(1) 烧伤整形(1), 重症医学(1), 其他(1)
Ⅲ(12) 17.0 2011(3),2012(8),2013(1) 痰液(8), 分泌物(2), 尿液(1), 血液(1) 神经外科(9)泌尿外科⑴,其他⑵
Ⅳ(5) 7.0 2010(1)2011(4) 痰液(3),胆汁(1),血液(1) 儿科⑴,普通外科⑴,其他(5)
Ⅴ(3) 4.0 2011(1), 2012(2) 痰液(1), 分泌物(1), 胆汁(1) 神经外科(1),普通外科(1),烧伤整形(1)
Ⅵ(16) 22.0 2010(2),2011(3),2012(8),2013(3) 痰液(6), 尿液(3), 脑脊液(2), 腹水(2),血液(3) 神经外科(9), 泌尿外科⑷,普通外科⑴,重症医学(2)
Ⅷ(22) 30.0 2011(10), 2012(8), 2013(4) 痰液(14),分泌物(3),胆汁(2)尿液(2),腹水(1) 神经外科(5), 泌尿外科(2), 儿科(1)普通外科⑴,烧伤整形⑵,重症医学⑴,其他(10)
Ⅸ(3) 4.0 2010(1),201(1),2012(1) 痰液(3) 神经外科(1), 儿科(1),其他(1)
ⅩⅢ(2) 3.0 2011(1),2013(1) 胆汁(1), 血液(1) 其他(2)
PMF clade 1(50) 69.4 2010(2), 2011(16), 2012(24) 2013(8) 痰液(28),尿液⑷,血液⑷,胆汁(2),分泌物(5),腹水(3),脑脊液(2) 神经外科(23), 泌尿外科(7), 儿科(1), 普通外科(2),烧伤整形(2),重症医学(3),其他(12)
clade 2 (22) 30.6 2010(2),2011(8),2012(8),2013(4) 痰液(13), 尿液⑴,血液⑶,胆汁⑷,分泌物(1) 神经外科(4), 儿科(3), 普通外科(2), 烧伤整形⑵,重症医学⑴,其他(10)
2.2 药敏试验

72株阴沟肠杆菌临床菌株对一、二、三代头孢类抗菌药物和氨苄西林/舒巴坦的耐药率高达61.1%~97.2%,对庆大霉素的耐药率较高(40.3%),对其他抗菌药物的耐药率均低于25.0%,见表 2。根据hsp60基因分型,各基因群菌株对一、二、三代头孢类抗菌药物的耐药率不全相同,差异有统计学意义。根据PMF分型,分支1菌株对二、三、四代头孢类抗菌药物、庆大霉素和妥布霉素的耐药率及多重耐药菌株检出率均高于分支2菌株,差异有统计学意义(表 2)。

表 2 72株阴沟肠杆菌对抗菌药物的耐药率(%) Table 2 Antibiotic resistance rates of 72 E. cloacae strains(%)
抗菌药物 合计(n=72) hsp60基因分型 P PMF分型 P
Ⅰ(n=6) Ⅱ(n=3) Ⅲ(n=l2) Ⅳ(n=5) Ⅴ(n=3) Ⅵ(n=16) Ⅷ(n=22) Ⅸ(n=3) ⅩⅢ(n=2) 分支1(n=50) 分支2(n=22)
CZO 30 70(97.2) 6(100.0) 3(100.0) 12(100.0) 3(60.0) 3(100.0) 16(100.0) 22(100.0) 3(100.0) 2(100.0) < 0.05 50(100.0) 20(90.9) > 0.05
CXM 30 55(76.4) 5(83.3) 1(33.3) 10(83.3) 3(60.0) 3(100.0) 15(93.8) 17(76.2) 1(33.3) - < 0.05 42(84.0) 13(59.1) < 0.05
CRO 30 44(61.1) 3(50.0) 1(33.3) 8(66.7) 2(40.0) 1(33.3) 13(81.3) 16(71.4) - - < 0.05 37(74.0) 7(31.8) < 0.001
CAZ 30 46(63.9) 2(33.3) 1(33.3) 9(75.0) 2(40.0) 1(33.3) 14(87.5) 16(71.4) - 1(50.0) < 0.001 39(78.0) 7(31.8) < 0.001
FEP 30 18(25.0) 1(16.7) - 3(25.0) 1(20.0) - 3(18.8) 10(47.6) - - > 0.05 16(32.0) 2(9.1) < 0.05
AMS 10/10 54(75.0) 3(50.0) 3(100.0) 9(75.0) 4(80.0) 2(66.7) 13(81.3) 18(81.0) 2(66.7) - > 0.05 40(80.0) 14(63.6) > 0.05
TZP 100/10 15(20.8) - 3(100.0) 1(8.3) 2(40.0) 3(18.8) 6(28.6) - - > 0.05 10(20.0) 5(22.7) > 0.05
GEN 10 29(40.3) 2(33.3) - 7(58.3) 1(20.0) - 11(68.8) 8(33.3) - - > 0.05 26(52.0) 3(13.6) < 0.001
T0B 10 18(25.0) 1(16.7) - 3(25.0) 1(20.0) - 8(50.0) 7(33.3) - - > 0.05 18(36.0) 2(9.1) < 0.05
AMK 30 7(9.7) 1(16.7) - 2(16.7) 1(20.0) - - 3(14.3) - - > 0.05 5(10.0) 2(9.1) > 0.05
LEV 5 8(11.1) 1(16.7) - - - - 1(6.3) 6(23.8) - - > 0.05 7(14.0) 1(4.5) > 0.05
CIP 5 9(12.5) 1(16.7) - - - - 2(12.5) 6(23.8) - - > 0.05 8(16.0) 1(4.5) > 0.05
IMP 10 4(5.6) - - - 1(20.0) 1(33.3) - 2(9.5) - - > 0.05 2(4.0) 2(9.1) > 0.05
MEM 10 4(5.6) - - - 1(20.0) 1(33.3) - 2(9.5) - - > 0.05 2(4.0) 2(9.1) > 0.05
多重耐药 28(38.9) 2(33.3) - 7(58.3) 1(20.0) 1(33.3) 9(56.3) 8(38.1) - - > 0.05 24(48.0) 4(18.2) < 0.05
注:括号外数据为菌株数,括号内数据为耐药率(%); -为无数据; CZO为头孢唑啉; CXM为头孢呋辛; CRO为头孢曲松; CAZ为头孢他啶; FEP为头孢吡肟; AMS为氨苄西林/舒巴坦; TZP为哌拉西林/他唑巴坦; GEN为庆大霉素; TOB为妥布霉素;AMK为阿米卡星;LEV为左氧氟沙星; CIP为环丙沙星; IMP为亚胺培南; MEM为美罗培南
2.3 耐药基因的检测

72株阴沟肠杆菌临床菌株共检测到8个耐药基因(dhamir-actshvtemctx-MqnrAqnrBqnrS),其他耐药基因检测为阴性,见表 3。产AmpC酶耐药基因携带率为33.0%,以mir-actdna为主;产ESBLs耐药基因携带率为29.0%,以shvtem为主;喹诺酮类耐药基因qnr携带率高达38.0%,以 qnrBqnrS 为主。根据hsp60基因分型:mir-act基因主要在基因群Ⅰ和Ⅳ菌株中检出;shvqnrB基因主要在基因群Ⅲ、Ⅵ和Ⅷ菌株中检出。根据PMF分型:mir-act基因主要在分支2菌株中检出;shvqnrB基因主要在分支1菌株中检出。2个分支菌株对mir-actshvqnrB的携带率不同,差异有统计学意义。

表 3 72株阴沟肠杆菌的耐药基因携带率(%) Table 3 Positive rates of drug resistance genes in 72 E. cloacae strains(%)
耐药基因 合计(n=72) hsp60分型 P PMF分型 P
Ⅰ(n=6) Ⅱ(n=3) Ⅲ (n=12) Ⅳ(n=5) Ⅴ (n=3) Ⅵ(n=16) Ⅷ(n=22) Ⅸ(n=3) ⅩⅢ(n=2) 分支1 (n=50) 分支2 (n=22)
产AmpC酶 dha 11(15.0) (16.7) - 3(25.0) - - 4(25.0) 3(14.3) - - > 0.05 10(20.0) (4.5) > 0.05
mir-acl 12(17.0) 5(83.3) - 3(25.0) 4(80.0) - - - - 2(100.0) > 0.05 3(6.0) 1(50.0) < 0.001
产ESBLs类 ctx-M 3(4.2) (16.7) - (8.3) - - - (4.8) - - > 0.05 2(4.0) (4.5) > 0.05
shv 14(19.4) - - 3(25.0) - - 6(37.5) 5(23.8) - - > 0.05 14(28.0) - < 0.001
tem 12(16.7) (16.7) - 3(25.0) - - 2(12.5) 6(28.6) - - > 0.05 11(22.0) (4.5) > 0.05
喹诺酮类 qnrA 3(4.2) - - - - - - 3(14.3) - - > 0.05 3(6.0) - > 0.05
qnrB 19(26.4) (16.7) - 5(41.7) - - 8(50.0) 4(19.0) - (50.0) > 0.05 17(34.0) 2(9.1) < 0.05
qnrS 9(12.5) 1(16.7) (16.7) - - - 1(6.3) 6(28.6) - - > 0.05 7(14.0) 2(9.1) > 0.05
注:括号外数据为菌株数,括号内数据为耐药基因携带率(%);-为无数据
3 讨论

近年来的研究显示,阴沟肠杆菌已成为重要的院内感染致病菌,在获得性败血症中占5%、感染肺炎中占5%、尿路感染中占4%、术后腹膜炎病例中占10%[15-17]。本研究中72株临床菌株共涉及7类标本和21个临床科室,提示阴沟肠杆菌在临床上可以引起多种感染。痰液/咽拭子标本在阴沟肠杆菌临床菌株中构成比较高,与国内外报道一致[15-16, 18]。在神经外科分离的菌株中,患者主要为脑出血或者脑创伤(25,92.6%)。这些患者在诊疗过程中有侵入性诊疗操作、抗生素使用情况复杂,加上辅助仪器治疗和患者免疫调节机制减弱,可能是引起院内阴沟肠杆菌感染的重要原因,因此在治疗和护理方面应引起重视[19-22]。基因群Ⅲ和Ⅵ菌株在神经外科标本中的检出率较高(18,66.7%),基因群Ⅷ菌株涉及13个临床科室5种不同类型的标本,提示这3个基因群的菌株可能具有重要的临床意义[19, 23-24]

随着抗菌药物在我国的广泛使用,阴沟肠杆菌临床菌株对抗生素的耐药率逐年上升,对其耐药机制的研究也成为热点[2-3, 5, 17, 19, 25-26]。本研究通过药敏试验和耐药基因检测发现,不同分子型别菌株的耐药特征不同,分支1基因群Ⅲ,Ⅵ和Ⅷ菌株对个别药物的耐药率和耐药基因的检出率高于分支2菌株。产AmpC酶和ESBLs是阴沟肠杆菌对第三代头[17, 25, 27]。本研究菌株中产AmpC酶耐药基因携带率与文献报道相似[28-29]。分支2(基因群Ⅰ、Ⅴ和ⅩⅢ)菌株中mir-act的携带率较高,并且首次发现基因群Ⅳ菌株携带mir-act基因。分支1菌株中mir-act基因携带率很低,推测可能与缺少该基因或者基因序列发生突变有关[30-31]。SHV型β-内酰胺酶可以引起细菌对广谱头孢菌素及单环β-内酰胺类抗生素耐药。本研究发现只有分支1菌株携带shv基因,提示shv基因的分布与特定的菌株型别有关,与文献报道一致[29, 31-32]。由质粒携带的qnr基因可导致细菌对喹诺酮类抗生素耐药,在肠杆菌属细菌中检出率非常高,并且容易和产AmpC酶或ESBLs耐药基因同时携带[16, 25, 28]。本研究结果显示,分支1(基因群Ⅲ、Ⅵ和Ⅷ)菌株中qnr基因检出率很高,同时携带至少一个产β-内酰胺酶基因。另据文献报道,含有qnr基因的菌株在喹诺酮类药物的选择压力作用下,靶位突变产生高度耐药的概率比不含qnr基因的菌株高100倍以上[26, 33]。虽然72株阴沟肠杆菌临床菌株对喹诺酮类抗生素的耐药率不高(11.1%、12.5%),但qnr基因携带率较高(38.2%),在选择压力下具有潜在的产生喹诺酮类耐药的风险,应在临床治疗中谨慎使用喹诺酮类药物。

阴沟肠杆菌具有遗传多样性,能够适应复杂的栖息环境,可能与不同的临床意义有关[4, 9, 18, 29, 31-32]。基因群Ⅰ菌株最初在土壤中发现,后来从人源标本中也能分离到[34]。基因群Ⅴ菌株经常从医院污水中分离到[35]。基因群Ⅵ、Ⅶ和Ⅷ菌株是重要的院内感染致病菌[12, 23]。基因群Ⅺ在临床上主要引起菌血症、术后腹膜炎等院内感染[19, 21]。临床标本中可以分离到基因群Ⅱ菌株,但是关于其致病的报道较少[36-37]。阴沟肠杆菌分支1菌株大部分从临床患者分离,认为和抗生素选择压力相关;分支2菌株的遗传关系相距较远,部分菌株可以从非肠道疾病患者的标本中分离到[1, 15]。结合本研究结果表明,阴沟肠杆菌临床菌株的分子型别与其临床分布、耐药表型和耐药基因有一定关联性,不同型别菌株的耐药机制及临床意义可能有所差异,因而明确临床菌株的分子型别对临床治疗和流行病学调查具有重要意义。

作者贡献:

王怡倩 ORCID:0000-0002-5376-101X

付宝庆 ORCID:0000-0002-9595-5197

王怡倩:设计实验、实验操作、撰写论文

付宝庆:分离菌株、实验操作

熊衍文、叶长芸:设计实验、修改论文

参考文献
[1]
Paauw A, Caspers MPM, Schuren FHJ, et al. Genomic diversity within the Enterobacter cloacae complex[J]. PLoS One, 2008, 3(8): e3018. DOI:10.1371/journal.pone.0003018
[2]
Wilson BM, El Chakhtoura NG, Patel S, et al. Carbapenem-resistant Enterobacter cloacae in patients from the US veterans health administration, 2006-2015[J]. Emerg Infect Dis, 2017, 23(5): 878-880. DOI:10.3201/eid2305.162034
[3]
Wang S, Xiao SZ, Gu FF, et al. Antimicrobial susceptibility and molecular epidemiology of clinical Enterobacter cloacae bloodstream isolates in Shanghai, China[J]. PLoS One, 2017, 12(12): e0189713. DOI:10.1371/journal.pone.0189713
[4]
Cabral AB, Maciel MAV, Barros JF, et al. Clonal spread and accumulation of β-lactam resistance determinants in Enterobacter aerogenes and Enterobacter cloacae complex isolates from infection and colonization in patients at a public hospital in Recife, Pernambuco, Brazil[J]. J Med Microbiol, 2017, 66(1): 70-77. DOI:10.1099/jmm.0.000398
[5]
de Almeida MVA, Cangussú IM, de Carvalho ALS, et al. Drug resistance, AmpC-β-lactamase and extended-spectrum β-lactamase-producing Enterobacter iaceae isolated from fish and shrimp[J]. Rev Inst Med Trop Sao Paulo, 2017, 59: e70. DOI:10.1590/S1678-9946201759070
[6]
Goh SH, Potter S, Wood JO, et al. hsp60 gene sequences as universal targets for microbial species identification:studies with coagulase-negative staphylococci[J]. J Clin Microbiol, 1996, 34(4): 818-823.
[7]
Hoffmann HA, Roggenkamp A. Population genetics of the nomenspecies Enterobacter cloacae[J]. Appl Environ Microbiol, 2003, 69(9): 5306-5318. DOI:10.1128/AEM.69.9.5306-5318.2003
[8]
Wang YQ, Xiao D, Li J, et al. Rapid identification and subtyping of Enterobacter cloacae clinical isolates using peptide mass fingerprinting[J]. Biomed Environ Sci, 2018, 31(1): 48-56. DOI:10.3967/bes2018.005
[9]
Guérin F, Isnard C, Sinel C, et al. Cluster-dependent colistin hetero-resistance in Enterobacter cloacae complex[J]. J Antimicrob Chemother, 2016, 71(11): 3058-3061. DOI:10.1093/jac/dkw260
[10]
Xiao D, Ye CY, Zhang HF, et al. The construction and evaluation of reference spectra for the identification of human pathogenic microorganisms by MALDI-TOF MS[J]. PLoS One, 2014, 9(9): e106312. DOI:10.1371/journal.pone.0106312
[11]
Dallenne C, Da Costa AD, Decré D, et al. Development of a set of multiplex PCR assays for the detection of genes encoding important β-lactamases in Enterobacteriaceae[J]. J Antimicrob Chemother, 2010, 65(3): 490-495. DOI:10.1093/jac/dkp498
[12]
Hoffmann H, Stindl S, Ludwig W, et al. Enterobacter hormaechei subsp.hormaechei comb.nov., and E.hormaechei subsp.steigerwaltii subsp.nov., three new subspecies of clinical importance[J]. J Clin Microbiol, 2005, 43(7): 3297-3303. DOI:10.1128/JCM.43.7.3297-3303.2005
[13]
Ho PL, Shek RH, Chow KH, et al. Detection and characterization of extended-spectrum beta-lactamases among bloodstream isolates of Enterobacter spp.in Hong Kong, 2000-2002[J]. J Antimicrob Chemother, 2000, 55(3): 326-332.
[14]
Robicsek A, Strahilevitz J, Sahm DF, et al. qnr prevalence in ceftazidime-resistant Enterobacteriaceae isolates from the United States[J]. Antimicrob Agents Chemother, 2006, 50(8): 2872-2874. DOI:10.1128/AAC.01647-05
[15]
Akbari M, Bakhshi B, Peerayeh SN. Particular distribution of Enterobacter cloacae strains isolated from urinary tract infection within clonal complexes[J]. Iran Biomed J, 2016, 20(1): 49-55. DOI:10.7508/ibj.2016.01.007
[16]
Mezzatesta ML, Gona F, Stefani S. Enterobacter cloacae complex:clinical impact and emerging antibiotic resistance[J]. Future Microbiol, 2012, 7(7): 887-902. DOI:10.2217/fmb.12.61
[17]
Chapuis A, Amoureux L, Bador J, et al. Outbreak of extended-spectrum Beta-lactamase producing Enterobacter cloacae with high MICs of quaternary ammonium compounds in a hematology ward associated with contaminated sinks[J]. Front Microbiol, 2016, 7: 1070. DOI:10.3389/fmicb.2016.01070
[18]
Girlich D, Poirel L, Nordmann P. Clonal distribution of multidrug-resistant Enterobacter cloacae[J]. Diagn Microbiol Infect Dis, 2015, 81(4): 264-268. DOI:10.1016/j.diagmicrobio.2015.01.003
[19]
Petrosillo N, Vranić-Ladavac M, Feudi C, et al. Spread of Enterobacter cloacae carrying blaNDM-1, blaCTX-M-15, blaSHV-12 and plasmid-mediated quinolone resistance genes in a surgical intensive care unit in Croatia[J]. J Glob Antimicrob Resist, 2016, 4: 44-48. DOI:10.1016/j.jgar.2015.09.008
[20]
Tato-Rodriguez R, Oteo-Iglesias J, Álvarez-García P, et al. Outbreak of multidrug-resistant CTX-M-9-producing Enterobacter cloacae complex in an intensive care unit[J]. Enferm Infecc Microbiol Clin, 2016, 34(4): 237-242. DOI:10.1016/j.eimc.2015.05.009
[21]
Bousquet A, van der Mee-Marquet N, Dubost C, et al. Outbreak of CTX-M-15-producing Enterobacter cloacae associated with therapeutic beds and syphons in an intensive care unit[J]. Am J Infect Control, 2017, 45(10): 1160-1164. DOI:10.1016/j.ajic.2017.04.010
[22]
Kanamori H, Parobek CM, Juliano JJ, et al. A prolonged outbreak of KPC-3-producing Enterobacter cloacae and Klebsiella pneumoniae driven by multiple mechanisms of resistance transmission at a large academic burn center[J]. Antimicrob Agents Chemother, 2017, 61(2): e01516-16. DOI:10.1128/AAC.01516-16
[23]
Yang BW, Feng Y, McNally A, et al. Occurrence of Enterobacter hormaechei carrying blaNDM-1 and blaKPC-2 in China[J]. Diagn Microbiol Infect Dis, 2018, 90(2): 139-142. DOI:10.1016/j.diagmicrobio.2017.10.007
[24]
Silva PP, Mirla B, Mattos AR, et al. Coproduction of NDM-1 and KPC-2 in Enterobacter hormaechei from Brazil[J]. Microb Drug Resist, 2015, 21(2): 234-236. DOI:10.1089/mdr.2014.0171
[25]
Cao XL, Cheng L, Zhang ZF, et al. Survey of clinical extended-spectrum beta-lactamase-producing Enterobacter cloacae isolates in a Chinese Tertiary hospital, 2012-2014[J]. Microb Drug Resist, 2017, 23(1): 83-89. DOI:10.1089/mdr.2015.0128
[26]
Peymani A, Farivar TN, Najafipour R, et al. High prevalence of plasmid-mediated quinolone resistance determinants in Enterobacter cloacae isolated from hospitals of the Qazvin, Alborz, and Tehran provinces, Iran[J]. Rev Soc Bras Med Trop, 2016, 49(3): 286-291. DOI:10.1590/0037-8682-0454-2015
[27]
Cascio A, Mezzatesta ML, Odierna A, et al. Extended-spectrum beta-lactamase-producing and carbapenemase-producing Enterobacter cloacae ventriculitis successfully treated with intraventricular colistin[J]. Int J Infect Dis, 2014, 20: 66-67. DOI:10.1016/j.ijid.2013.11.012
[28]
Khari FIM, Karunakaran R, Rosli R, et al. Genotypic and phenotypic detection of AmpC β-lactamases in Enterobacter spp.Isolated from a Teaching Hospital in Malaysia[J]. PLoS One, 2016, 11(3): e0150643. DOI:10.1371/journal.pone.0150643
[29]
Izdebski R, Baraniak A, Herda M, et al. MLST reveals potentially high-risk international clones of Enterobacter cloacae[J]. J Antimicrob Chemother, 2015, 70(1): 48-56. DOI:10.1093/jac/dku359
[30]
Conceição T, Faria N, Lito L, et al. Diversity of chromosomal AmpC β-lactamases from Enterobacter cloacae isolates in a Portuguese hospital[J]. FEMS Microbiol Lett, 2004, 230(2): 197-202. DOI:10.1016/S0378-1097(03)00891-7
[31]
Harada K, Shimizu T, Mukai Y, et al. Phenotypic and molecular characterization of antimicrobial resistance in Enterobacter spp.isolates from companion animals in Japan[J]. PLoS One, 2017, 12(3): e0174178. DOI:10.1371/journal.pone.0174178
[32]
Liu J, Li GM, Lin LY, et al. Association of antibiotic resistance with SHV-12 extended-spectrum β-lactamase in Enterobacter cloacae[J]. Exp Ther Med, 2016, 11(1): 269-276. DOI:10.3892/etm.2015.2851
[33]
Guillard T, Cholley P, Limelette A, et al. Fluoroquinolone Resistance Mechanisms and population structure of Enterobacter cloacae non-susceptible to Ertapenem in North-Eastern France[J]. Front Microbiol, 2015, 6: 1186. DOI:10.3389/fmicb.2015.01186
[34]
Brenner DJ, McWhorter AC, Kai A, et al. Enterobacter asburiae sp.nov., a new species found in clinical specimens, and reassignment of Erwinia dissolvens and Erwinia nimipressuralis to the genus Enterobacter as Enterobacter dissolvens comb.nov.and Enterobacter nimipressuralis comb.nov[J]. J Clin Microbiol, 1986, 23(6): 1114-1120.
[35]
Egidi E, Wood JL, Aracic S, et al. Draft genome sequence of Enterobacter ludwigii NCR3, a heavy metal-resistant rhizobacterium[J]. Genome Announc, 2016, 4(5): e01076-16. DOI:10.1128/genomeA.01076-16
[36]
Kreger-van Rij NJW. A new feature of the ascospores of Saccharomycodes ludwigii Hansen[J][J]. Can J Microbiol, 1969, 15(7): 823-825. DOI:10.1139/m69-147
[37]
Zhou K, Yu W, Bonnet R, et al. Emergence of a novel Enterobacter kobei clone carrying chromosomal-encoded CTX-M-12 with diversified pathogenicity in northeast China[J][J]. New Microbes New Infect, 2017, 17: 7-10. DOI:10.1016/j.nmni.2017.01.006