Application of Richards model in real-time incidence prediction of pandemic influenza A (H1N1)
-
摘要: 目的 研究浙江省甲型H1N1流感的流行规律,为有效防控甲型H1N1流感疫情提供科学依据。 方法 利用浙江省2009 - 2010年的甲型H1N1流感发病资料,拟合Richards模型,估计流行拐点、预测发病总数和估算基本再生数R0。 结果 2009年5月至2010年3月,全省共报告甲型H1N1流感病例13 487例,发病率26.04/10万。浙江省甲型H1N1流感的流行分两波峰,2009年9月22日为第一个小高峰下降的拐点,R0为2.44(95%CI:1.75~3.96)。2009年10月10日为第二波峰出现上升的拐点,2009年11月28日为全省疫情出现下降的真正拐点,该拐点在出现后的第16天即能被监测到。全省预测的总病例数为13 642.82例,实际报告13 706例,误差率仅为0.46%,模型拟合的确定系数R2为0.999,R0为1.33(95%CI:1.31~1.35)。 结论 Richards模型在实时预测甲型H1N1流感流行时效果良好,且能较为及时的监测到流行拐点。
-
关键词:
- 甲型H1N1流感 /
- Richards 模型 /
- 基本再生数 /
- 流行拐点
Abstract: Objective To study the characteristics of pandemic influenza A (H1N1) in Zhejiang province. Methods Richards model was fitted by using the incidence data of pandemic influenza A (H1N1) in Zhejiang during 2009 - 2010 to estimate the inflection point of epidemic, basic reproduction number and total case number. Results A total of 13 487 pandemic influenza A (H1N1) cases were reported from May, 2009 to March, 2010 in Zhejiang with the incidence of 26.04/lakh. There were two incidence peaks, the first one was on September 22, 2009, the basic reproduction number was 2.44 (95%CI:1.75-3.96). The incidence rose again on October 10, 2009 and peaked on November 28, 2009, the second peak could be found 16 days later. The estimated case number was 13 642.82 and the actual case number was 13 706, the error rate was only 0.46%. The coefficient of determination (R square) for Richards model was 0.999 and the basic reproduction number was 1.33 (95%CI:1.31-1.35). Conclusion Richards model is effective in real-time incidence prediction of pandemic influenza A (H1N1) and could found the inflection point of epidemic in time. -
[1]
[1] Richards FJ. A flexible growth function for empirical use
[J]. J Exp Bot,1959,10(2):290-301.
[2] Ma ZE, Zhou YC, Wu JH. Modeling of communicable disease and dynamics
[M]. Beijing: Higher Education Press,2009. (in Chinese) 马知恩,周义仓,吴建宏.传染病的建模与动力学
[M].北京:高等教育出版社,2009.
[3] Yang JY. Analysis on reproductive number of communicable disease model
[J]. Journal of Yuncheng University,2006, 24 (2):6-7.(in Chinese) 杨建雅.传染病模型再生数分析
[J].运城学院学报,2006,24(2):6-7.
[4] Cao WC. Epidemiology of Communicable Diseases
[M]. Beijing: Higher Education Press,2008.(in Chinese) 曹务春.传染病流行病学
[M].北京:高等教育出版社,2008.
[5] The Ministry of Health. Diagnosis and treatment protocol of pandemic influenza A (H1N1)
[S]. Beijing: The Ministry of Health,2009.(in Chinese) 卫生部.甲型H1N1流感诊疗方案
[S].北京:卫生部,2009.
[6] Fraser C, Riley S, Anderson RM,et al. Factors that make an infectious disease outbreak controllable
[J]. Proc Natl Acad Sci USA,2004,101(16):6146-6151.
[7] Coulombier D, Giesecke J. Why are Mexican data important
[J]. Euro Surveill,2009,14(19): pii=19212.
[8] Nishiura H, Castillo-Chavez C, Safan M, et al. Transmission potential of the new influenza A(H1N1) virus and its age-specificity in Japan
[J]. Euro Surveill,2009,14(22): pii=19227.
[9] Boelle PY, Bernillon P, Desenclos JC. A preliminary estimation of the reproduction ratio for new influenza A(H1N1) from the outbreak in Mexico, March-April 2009
[J]. Euro Surveill,2009,14(19): pii=19205.
[10] Gao X. Pandemic of influenza in 2009-review of global response
[M]. Beijing: The people's Medical Publishing House,2010. (in Chinese) 高星.2009年流感大流行——全球应对思考与启示
[M].北京:人民卫生出版社,2010. -

计量
- 文章访问数: 993
- HTML全文浏览量: 50
- PDF下载量: 375
- 被引次数: 0