血源性病原菌早期诊断技术研究进展

陈晓丽 卢金星 陈小萍

引用本文: 陈晓丽, 陈小萍, 卢金星. 血源性病原菌早期诊断的分子生物学技术研究进展[J]. 疾病监测. DOI: 10.3784/j.issn.1003-9961.2019.09.016 shu
Citation:  Xiaoli Chen, Xiaoping Chen and Jinxing Lu. Progress in research of early diagnosis of blood-borne pathogens[J]. Disease Surveillance. DOI: 10.3784/j.issn.1003-9961.2019.09.016 shu

血源性病原菌早期诊断技术研究进展

    作者简介: 陈晓丽,女,山东省泰安市人,在读硕士研究生,主要从事血源性病原菌早期诊断相关工作,Email:15165117996@163.com;
    通信作者: 卢金星, lujinxing@icdc.cn 陈小萍, chenxiaoping@icdc.cn
  • 基金项目: 国家科技重大专项(No.2018ZX10733-402)

摘要: 医院住院患者常常发生血液病原菌感染,死亡率高,早期快速鉴定病原体给予适当的抗微生物疗法是降低死亡率的关键。 血培养是诊断血液病原菌感染的金标准,然而血培养不仅耗时且阳性率低。 分子生物学方法可大幅度缩减诊断时间,提高诊断的灵敏度与特异性,为临床合理用药与准确治疗提供可靠的依据,进而提高患者的生存率。 本研究就血源性病原菌诊断的分子生物学方法(主要包括核酸杂交技术、核酸扩增技术、荧光实时定量PCR技术、DNA微阵列与基质辅助激光解析电离飞行时间质谱等技术)等进行综述。

English

    1. [1]

      Armstrong BA, Betzold RD, May AK. Sepsis and septic shock strategies[J]. Surg Clin North Am, 2017,97(6):1339–1379. DOI:10.1016/j.suc.2017.07.003.

    2. [2]

      Vazquez-Grande G, Kumar A. Optimizing antimicrobial therapy of sepsis and septic shock: focus on antibiotic combination therapy[J]. Semin Respir Crit Care Med, 2015,36(1):154–166. DOI:10.1055/s−0034−1398742.

    3. [3]

      Kleinpell R, Schorr CA. Targeting sepsis as a performance improvement metric: role of the nurse[J]. AACN Adv Crit Care, 2014,25(2):179–186. DOI:10.1097/NCI.0000000000000015.

    4. [4]

      Zhou JF, Qian CY, Zhao MY, et al. Epidemiology and outcome of severe sepsis and septic shock in intensive care units in mainland China[J]. PLoS One, 2014,9(9):e107181. DOI:10.1371/journal.pone.0107181.

    5. [5]

      Suffredini AF, Munford RS. Novel therapies for septic shock over the past 4 decades[J]. JAMA, 2011,306(2):194–199. DOI:10.1001/jama.2011.909.

    6. [6]

      Burillo A, Bouza E. Use of rapid diagnostic techniques in ICU patients with infections[J]. BMC Infect Dis, 2014,14:593. DOI:10.1186/s12879−014−0593−1.

    7. [7]

      Chen XC, Yang YF, Wang R, et al. Epidemiology and microbiology of sepsis in mainland China in the first decade of the 21st century[J]. Int J Infect Dis, 2015,31:9–14. DOI:10.1016/j.ijid.2014.11.027.

    8. [8]

      Liesenfeld O, Lehman L, Hunfeld KP, et al. Molecular diagnosis of sepsis: New aspects and recent developments[J]. Eur J Microbiol Immunol (Bp) , 2014,4(1):1–25. DOI:10.1556/EuJMI.4.2014.1.1.

    9. [9]

      Cosgrove SE, Li DX, Tamma PD, et al. Use of PNA FISH for blood cultures growing Gram-positive cocci in chains without a concomitant antibiotic stewardship intervention does not improve time to appropriate antibiotic therapy[J]. Diagn Microbiol Infect Dis, 2016,86(1):86–92. DOI:10.1016/j.diagmicrobio.2016.06.016.

    10. [10]

      Radic M, Goic-Barisic I, Novak A, et al. Evaluation of PNA FISH® Yeast Traffic Light in identification of Candida species from blood and non-blood culture specimens[J]. Med Mycol, 2016,54(6):654–658. DOI:10.1093/mmy/myw012.

    11. [11]

      Calderaro A, Martinelli M, Motta F, et al. Comparison of peptide nucleic acid fluorescence in situ hybridization assays with culture-based matrix-assisted laser desorption/ionization-time of flight mass spectrometry for the identification of bacteria and yeasts from blood cultures and cerebrospinal fluid cultures[J]. Clin Microbiol Infect, 2014,20(8):O468–O475. DOI:10.1111/1469−0691.12490.

    12. [12]

      Koncelik DL, Hernandez J. The impact of implementation of rapid QuickFISH testing for detection of coagulase-negative staphylococci at a community-based hospital[J]. Am J Clin Pathol, 2016,145(1):69–74. DOI:10.1093/ajcp/aqv005.

    13. [13]

      Prudent E, Raoult D. Fluorescence in situ hybridization, a complementary molecular tool for the clinical diagnosis of infectious diseases by intracellular and fastidious bacteria[J]. FEMS Microbiol Rev, 2019,43(1):88–107. DOI:10.1093/femsre/fuy040.

    14. [14]

      Opota O, Jaton K, Greub G. Microbial diagnosis of bloodstream infection: Towards molecular diagnosis directly from blood[J]. Clin Microbiol Infect, 2015,21(4):323–331. DOI:10.1016/j.cmi.2015.02.005.

    15. [15]

      Su GM, Fu ZQ, Hu LR, et al. 16S ribosomal ribonucleic acid gene polymerase chain reaction in the diagnosis of bloodstream infections: a systematic review and meta-analysis[J]. PLoS One, 2015,10(5):e0127195. DOI:10.1371/journal.pone.0127195.

    16. [16]

      Punia H, Gathwala G, Dhaulakhandi DB, et al. Diagnosis of neonatal sepsis using 16S rRNA polymerase chain reaction[J]. Trop Doct, 2017,47(4):336–339. DOI:10.1177/0049475517701875.

    17. [17]

      廖梅杰, 张正, 荣小军, 等. 基于vhhP2基因的SYBR Green Ⅰ实时定量PCR检测哈维氏弧菌方法的建立[J]. 中国水产科学,2014,21(3):611–620. DOI:10.3724/SP.J.1118.2014.00611.
      Liao MJ, Zhang Z, Rong XJ, et al. Development of a SYBR Green I real-time PCR for detection of Vibrio harveyi based on the vhhP2 gene[J]. J Fishery Sci China, 2014,21(3):611–620. DOI:10.3724/SP.J.1118.2014.00611.

    18. [18]

      Liu CF, Shi XP, Chen Y, et al. Rapid diagnosis of sepsis with TaqMan‐Based multiplex real‐time PCR[J]. J Clin Lab Anal, 2018,32(2):e22256. DOI:10.1002/jcla.22256.

    19. [19]

      Gosiewski T, Jurkiewicz-Badacz D, Sroka A, et al. A novel, nested, multiplex, real-time PCR for detection of bacteria and fungi in blood[J]. BMC Microbiol, 2014,14:144. DOI:10.1186/1471−2180−14−144.

    20. [20]

      Dark P, Blackwood B, Gates S, et al. Accuracy of LightCycler® SeptiFast for the detection and identification of pathogens in the blood of patients with suspected sepsis: a systematic review protocol[J]. Intensive Care Med, 2015,41(1):21–33. DOI:10.1007/s00134−014−3553−8.

    21. [21]

      Tocqueville V, Ferré S, Nguyen NHP, et al. Multilocus sequence typing of Mycoplasma hyorhinis strains identified by a real-time TaqMan PCR assay[J]. J Clin Microbiol, 2014,52(5):1664–1771. DOI:10.1128/JCM.03437−13.

    22. [22]

      Kim SY, Hong YJ, Hwang SM, et al. Direct identification of Gram-positive bacteria and resistance determinants from blood cultures using a microarray-based nucleic acid assay: in-depth analysis of microarray data for undetermined results[J]. Clin Chem Lab Med, 2015,53(7):1013–1024. DOI:10.1515/cclm−2014−0669.

    23. [23]

      Nölling J, Rapireddy S, Amburg JI, et al. Duplex DNA-invading γ-modified peptide nucleic acids enable rapid identification of bloodstream infections in whole blood[J]. mBio, 2016,7(2):e00345–16. DOI:10.1128/mBio.00345−16.

    24. [24]

      De Luca Ferrari M, Resende MR, Sakai K, et al. Visual analysis of DNA microarray data for accurate molecular identification of Non-albicans Candida isolates from patients with candidemia episodes[J]. J Clin Microbiol, 2013,51(11):3826–3829. DOI:10.1128/JCM.01050−13.

    25. [25]

      Kohlmann R, Hoffmann A, Geis G, et al. MALDI-TOF mass spectrometry following short incubation on a solid medium is a valuable tool for rapid pathogen identification from positive blood cultures[J]. Int J Med Microbiol, 2015,305(4/5):469–479. DOI:10.1016/j.ijmm.2015.04.004.

    26. [26]

      Lagacé-Wiens P. Matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF/MS)-based identification of pathogens from positive blood culture bottles[M]//Mancini N. Sepsis: diagnostic methods and protocols. New York: Humana Press, 2015: 47-55. DOI: 10.1007/978−1−4939−1776−1_5.

    27. [27]

      Croxatto A, Prod'Hom G, Durussel C, et al. Preparation of a blood culture pellet for rapid bacterial identification and antibiotic susceptibility testing[J]. J Vis Exp, 2014(92):e51985. DOI:10.3791/51985.

    28. [28]

      Verroken A, Defourny L, Lechgar L, et al. Reducing time to identification of positive blood cultures with MALDI-TOF MS analysis after a 5-h subculture[J]. Eur J Clin Microbiol Infect Dis, 2015,34(2):405–413. DOI:10.1007/s10096−014−2242−4.

    29. [29]

      Arabestani MR, Fazzeli H, Nasr Esfahani B. Identification of the most common pathogenic bacteria in patients with suspected sepsis by multiplex PCR[J]. J Infect Dev Ctries, 2014,8(4):461–468. DOI:10.3855/jidc.3856.

    30. [30]

      Ziegler I, Fagerström A, Strålin K, et al. Evaluation of a commercial multiplex PCR assay for detection of pathogen DNA in blood from patients with suspected sepsis[J]. PLoS One, 2016,11(12):e0167883. DOI:10.1371/journal.pone.0167883.

    31. [31]

      Mwaigwisya S, Assiri RAM, O'Grady J. Emerging commercial molecular tests for the diagnosis of bloodstream infection[J]. Expert Rev Mol Diagn, 2015,15(5):681–692. DOI:10.1586/14737159.2015.1029459.

    32. [32]

      陈柱. 基于磁分离的现场核酸检测平台若干关键技术研究[D]. 南京: 东南大学, 2016.
      Chen Z. Study on key technologies of on-site nucleic acid detection platform based on magnetic separation[D]. Nanjing: Southeast University, 2016.

    33. [33]

      Vutukuru MR, Sharma DK, Ragavendar MS, et al. A rapid, highly sensitive and culture-free detection of pathogens from blood by positive enrichment[J]. J Microbiol Methods, 2016,131:105–109. DOI:10.1016/j.mimet.2016.10.008.

    34. [34]

      Lopes ALK, Cardoso J, dos Santos FRCC, et al. Development of a magnetic separation method to capture sepsis associated bacteria in blood[J]. J Microbiol Methods, 2016,128:96–101. DOI:10.1016/j.mimet.2016.07.012.

    35. [35]

      赵瑞雪, 杜美红, 李静雯, 等. 国产沙门氏菌免疫磁珠的制备及其应用[J]. 食品安全质量检测学报,2018,9(4):843–850. DOI:10.3969/j.issn.2095−0381.2018.04.027.
      Zhao RX, Du MH, Li JW, et al. Preparation and application of domestic anti-Salmonella immunomagnetic beads[J]. J Food Saf Qual, 2018,9(4):843–850. DOI:10.3969/j.issn.2095−0381.2018.04.027.

    36. [36]

      Gao J, Jeffries L, Mach KE, et al. A multiplex electrochemical biosensor for bloodstream infection diagnosis[J]. SLAS Technol, 2017,22(4):466–474. DOI:10.1177/2211068216651232.

    37. [37]

      da Silva AR, de Andrade Neto JB, da Silva CR, et al. Berberine antifungal activity in fluconazole-resistant pathogenic yeasts: action mechanism evaluated by flow cytometry and biofilm growth inhibition in Candida spp.[J]. Antimicrob Agents Chemother, 2016,60(6):3551–3557. DOI:10.1128/AAC.01846−15.

    1. [1]

      毛玲玲姚文清张旭雷露刘学升 . 辽宁省1株犬种布鲁氏菌分离株的分子生物学鉴定. 疾病监测, 2012, 27(5): 385-387,399. DOI: 10.3784/j.issn.1003-9961.2012.5.016

    2. [2]

      亚红祥沈姝苏正元邓菲张云智 . 云南省西北地区家畜体表蜱类形态学与分子生物学鉴定. 疾病监测, 2017, 32(7): 609-614. DOI: 10.3784/j.issn.1003-9961.2017.07.019

    3. [3]

      杨杜鹃张海林苏梅惠王勇程雪琴杨卫红章域震冯云覃谊石山梅殷小栎张丽娟 . 血清学和分子生物学证实云南省勐海县存在恙虫病流行. 疾病监测, 2014, 29(9): 733-736. DOI: 10.3784/j.issn.1003-9961.2014.09.016

    4. [4]

      张兰荣王艳张扬高翔甄博珺张冲邹林刘晓峰金东李伟王天姝余波贺春月叶长芸 . 2011年北京市通州区分离单增李斯特菌的生物学及分子流行病学特征. 疾病监测, 2012, 27(7): 562-564. DOI: 10.3784/j.issn.1003-9961.2012.7.018

    5. [5]

      郑皓李文革杨海英吴媛车洁陈小萍卢金星 . 脓毒症常见病原菌多重实时PCR检测方法的建立. 疾病监测, 2017, 32(9): 752-756. DOI: 10.3784/j.issn.1003-9961.2017.09.012

    6. [6]

      王增国相莲李芳魏晓光吴守芝 . 一种多重PCR方法快速鉴定7种常见肠道病原菌. 疾病监测, 2013, 28(5): 412-415. DOI: 10.3784/j.issn.1003-9961.2013.5.021

    7. [7]

      张红芳王衡严卓琳杨利群钱华沈美清刘建 . 浙江省桐乡市首例布鲁氏菌病原学诊断病例调查. 疾病监测, 2013, 28(1): 47-49. DOI: 10.3784/j.issn.1003-9961.2013.1.015

    8. [8]

      张慧芳龚杰张炳华张建中肖迪 . 基于MALDI-TOF MS预提取样本制备法废弃成分识别病原菌的方法建立及识别能力评价. 疾病监测, 2019, 34(11): 964-968. DOI: 10.3784/j.issn.1003-9961.2019.11.005

    9. [9]

      . 丙型病毒性肝炎病毒感染实验诊断技术及方法学概述. 疾病监测, 2014, 29(10): 837-844. DOI: 10.3784/j.issn.1003-9961.2014.10.020

    10. [10]

      于茂河王栩冬郑敏娜赵璇宁铁林程绍辉夏建晖郭燕周宁 . 天津市高危人群艾滋病早期感染检测策略研究. 疾病监测, 2016, 31(1): 40-44. DOI: 10.3784/j.issn.1003-9961.2016.01.010

  • 表 1  基于血培养阳性样本病原菌检测的商业方法

    Table 1.  Commercially available methods for pathogen detection in positive blood culture samples

     仪器及生产厂家技术原理病原菌灵敏度(%)特异度(%)诊断时间(h)
    Prove-itTM Sepsis(Mobidiag® Finland)多重PCR、基因芯片60种细菌、13种真菌96.0 ~ 99.0 98.0 ~ 100.018
    FilmArray®(BioFire Diagnostics,USA)多重实时PCR8种革兰阳性菌、11种革兰阴性菌、5种真菌80.0 ~ 94.0 95.0 ~ 100.016
    Verigene®(Nanosphere Technology,USA)Gram-negative bacteria(BC-GN)基因芯片杂交9种革兰阴性菌89.0 ~ 100.093.0 ~ 100.017.5
    Verigene®(Nanosphere Technology,USA)Gram-positive bacteria(BC-GP)基因芯片杂交13种革兰阳性菌93.0 ~ 100.095.0 ~ 100.017.5
    下载: 导出CSV

    表 2  全血中直接检测病原菌的商业方法

    Table 2.  Commercially available methods for direct pathogen detection in whole blood samples

     仪器及生产厂家技术原理病原菌检测限
    (CFU/ml)
    灵敏度
    (%)
    特异度
    (%)
    诊断时间
    (h)
    T2Candida® test(T2Biosystems inc)PCR、核磁共振技术5种念珠菌1100.098.03
    SeptiFast(Roche Diagnostics,Germany)实时PCR25种细菌和真菌3 ~ 3068.0 ~ 75.086.0 ~ 92.06
    SepsiTest(Molzym,Germany)PCR、测序345种细菌和真菌20 ~ 46086.0 ~ 87.083.0 ~ 85.08 ~ 12
    Vyoo®(SIRS,Germany)PCR、电泳34种细菌、6种真菌 5 ~ 10060.070.0 ~ 75.07
    MagicplexTM(Seegene,Korea)实时PCR85种细菌、6种真菌65.092.06
    下载: 导出CSV
  • 2019-0073 血源性病原菌早期诊断技术研究进展.docx

  • 加载中
计量
  • PDF下载量:  33
  • 文章访问数:  8342
  • HTML全文浏览量:  1864
  • 引证文献数: 0
文章相关
通信作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章

在线交流