血源性病原菌早期诊断技术研究进展

陈晓丽 卢金星 陈小萍

陈晓丽, 卢金星, 陈小萍. 血源性病原菌早期诊断技术研究进展[J]. 疾病监测, 2019, 34(9): 849-854. doi: 10.3784/j.issn.1003-9961.2019.09.016
引用本文: 陈晓丽, 卢金星, 陈小萍. 血源性病原菌早期诊断技术研究进展[J]. 疾病监测, 2019, 34(9): 849-854. doi: 10.3784/j.issn.1003-9961.2019.09.016
Xiaoli Chen, Jinxing Lu, Xiaoping Chen. Progress in research of early diagnosis of blood-borne pathogens[J]. Disease Surveillance, 2019, 34(9): 849-854. doi: 10.3784/j.issn.1003-9961.2019.09.016
Citation: Xiaoli Chen, Jinxing Lu, Xiaoping Chen. Progress in research of early diagnosis of blood-borne pathogens[J]. Disease Surveillance, 2019, 34(9): 849-854. doi: 10.3784/j.issn.1003-9961.2019.09.016

血源性病原菌早期诊断技术研究进展

doi: 10.3784/j.issn.1003-9961.2019.09.016
基金项目: 国家科技重大专项(No.2018ZX10733-402)
详细信息
    作者简介:

    陈晓丽,女,山东省泰安市人,在读硕士研究生,主要从事血源性病原菌早期诊断相关工作,Email:15165117996@163.com

    通讯作者:

    卢金星,Tel:010–58900702,Email:lujinxing@icdc.cn

    陈小萍,Tel:010–58900762,Email:chenxiaoping@icdc.cn

  • 中图分类号: R446

Progress in research of early diagnosis of blood-borne pathogens

Funds: This study was supported by the fund for National Major Scientific Research Project (No.2018ZX10733-40)
More Information
  • 摘要: 医院住院患者常常发生血液病原菌感染,死亡率高,早期快速鉴定病原体给予适当的抗微生物疗法是降低死亡率的关键。 血培养是诊断血液病原菌感染的金标准,然而血培养不仅耗时且阳性率低。 分子生物学方法可大幅度缩减诊断时间,提高诊断的灵敏度与特异性,为临床合理用药与准确治疗提供可靠的依据,进而提高患者的生存率。 本研究就血源性病原菌诊断的分子生物学方法(主要包括核酸杂交技术、核酸扩增技术、荧光实时定量PCR技术、DNA微阵列与基质辅助激光解析电离飞行时间质谱等技术)等进行综述。
  • 表  1  基于血培养阳性样本病原菌检测的商业方法

    Table  1.   Commercially available methods for pathogen detection in positive blood culture samples

     仪器及生产厂家技术原理病原菌灵敏度(%)特异度(%)诊断时间(h)
    Prove-itTM Sepsis(Mobidiag® Finland)多重PCR、基因芯片60种细菌、13种真菌96.0 ~ 99.0 98.0 ~ 100.018
    FilmArray®(BioFire Diagnostics,USA)多重实时PCR8种革兰阳性菌、11种革兰阴性菌、5种真菌80.0 ~ 94.0 95.0 ~ 100.016
    Verigene®(Nanosphere Technology,USA)Gram-negative bacteria(BC-GN)基因芯片杂交9种革兰阴性菌89.0 ~ 100.093.0 ~ 100.017.5
    Verigene®(Nanosphere Technology,USA)Gram-positive bacteria(BC-GP)基因芯片杂交13种革兰阳性菌93.0 ~ 100.095.0 ~ 100.017.5
    下载: 导出CSV

    表  2  全血中直接检测病原菌的商业方法

    Table  2.   Commercially available methods for direct pathogen detection in whole blood samples

     仪器及生产厂家技术原理病原菌检测限
    (CFU/ml)
    灵敏度
    (%)
    特异度
    (%)
    诊断时间
    (h)
    T2Candida® test(T2Biosystems inc)PCR、核磁共振技术5种念珠菌1100.098.03
    SeptiFast(Roche Diagnostics,Germany)实时PCR25种细菌和真菌3 ~ 3068.0 ~ 75.086.0 ~ 92.06
    SepsiTest(Molzym,Germany)PCR、测序345种细菌和真菌20 ~ 46086.0 ~ 87.083.0 ~ 85.08 ~ 12
    Vyoo®(SIRS,Germany)PCR、电泳34种细菌、6种真菌 5 ~ 10060.070.0 ~ 75.07
    MagicplexTM(Seegene,Korea)实时PCR85种细菌、6种真菌65.092.06
    下载: 导出CSV
  • [1] Armstrong BA, Betzold RD, May AK. Sepsis and septic shock strategies[J]. Surg Clin North Am, 2017,97(6):1339–1379. DOI: 10.1016/j.suc.2017.07.003.
    [2] Vazquez-Grande G, Kumar A. Optimizing antimicrobial therapy of sepsis and septic shock: focus on antibiotic combination therapy[J]. Semin Respir Crit Care Med, 2015,36(1):154–166. DOI: 10.1055/s−0034−1398742.
    [3] Kleinpell R, Schorr CA. Targeting sepsis as a performance improvement metric: role of the nurse[J]. AACN Adv Crit Care, 2014,25(2):179–186. DOI: 10.1097/NCI.0000000000000015.
    [4] Zhou JF, Qian CY, Zhao MY, et al. Epidemiology and outcome of severe sepsis and septic shock in intensive care units in mainland China[J]. PLoS One, 2014,9(9):e107181. DOI: 10.1371/journal.pone.0107181.
    [5] Suffredini AF, Munford RS. Novel therapies for septic shock over the past 4 decades[J]. JAMA, 2011,306(2):194–199. DOI: 10.1001/jama.2011.909.
    [6] Burillo A, Bouza E. Use of rapid diagnostic techniques in ICU patients with infections[J]. BMC Infect Dis, 2014,14:593. DOI: 10.1186/s12879−014−0593−1.
    [7] Chen XC, Yang YF, Wang R, et al. Epidemiology and microbiology of sepsis in mainland China in the first decade of the 21st century[J]. Int J Infect Dis, 2015,31:9–14. DOI: 10.1016/j.ijid.2014.11.027.
    [8] Liesenfeld O, Lehman L, Hunfeld KP, et al. Molecular diagnosis of sepsis: New aspects and recent developments[J]. Eur J Microbiol Immunol (Bp) , 2014,4(1):1–25. DOI: 10.1556/EuJMI.4.2014.1.1.
    [9] Cosgrove SE, Li DX, Tamma PD, et al. Use of PNA FISH for blood cultures growing Gram-positive cocci in chains without a concomitant antibiotic stewardship intervention does not improve time to appropriate antibiotic therapy[J]. Diagn Microbiol Infect Dis, 2016,86(1):86–92. DOI: 10.1016/j.diagmicrobio.2016.06.016.
    [10] Radic M, Goic-Barisic I, Novak A, et al. Evaluation of PNA FISH® Yeast Traffic Light in identification of Candida species from blood and non-blood culture specimens[J]. Med Mycol, 2016,54(6):654–658. DOI: 10.1093/mmy/myw012.
    [11] Calderaro A, Martinelli M, Motta F, et al. Comparison of peptide nucleic acid fluorescence in situ hybridization assays with culture-based matrix-assisted laser desorption/ionization-time of flight mass spectrometry for the identification of bacteria and yeasts from blood cultures and cerebrospinal fluid cultures[J]. Clin Microbiol Infect, 2014,20(8):O468–O475. DOI: 10.1111/1469−0691.12490.
    [12] Koncelik DL, Hernandez J. The impact of implementation of rapid QuickFISH testing for detection of coagulase-negative staphylococci at a community-based hospital[J]. Am J Clin Pathol, 2016,145(1):69–74. DOI: 10.1093/ajcp/aqv005.
    [13] Prudent E, Raoult D. Fluorescence in situ hybridization, a complementary molecular tool for the clinical diagnosis of infectious diseases by intracellular and fastidious bacteria[J]. FEMS Microbiol Rev, 2019,43(1):88–107. DOI: 10.1093/femsre/fuy040.
    [14] Opota O, Jaton K, Greub G. Microbial diagnosis of bloodstream infection: Towards molecular diagnosis directly from blood[J]. Clin Microbiol Infect, 2015,21(4):323–331. DOI: 10.1016/j.cmi.2015.02.005.
    [15] Su GM, Fu ZQ, Hu LR, et al. 16S ribosomal ribonucleic acid gene polymerase chain reaction in the diagnosis of bloodstream infections: a systematic review and meta-analysis[J]. PLoS One, 2015,10(5):e0127195. DOI: 10.1371/journal.pone.0127195.
    [16] Punia H, Gathwala G, Dhaulakhandi DB, et al. Diagnosis of neonatal sepsis using 16S rRNA polymerase chain reaction[J]. Trop Doct, 2017,47(4):336–339. DOI: 10.1177/0049475517701875.
    [17] 廖梅杰, 张正, 荣小军, 等. 基于vhhP2基因的SYBR Green Ⅰ实时定量PCR检测哈维氏弧菌方法的建立[J]. 中国水产科学,2014,21(3):611–620. DOI: 10.3724/SP.J.1118.2014.00611.

    Liao MJ, Zhang Z, Rong XJ, et al. Development of a SYBR Green I real-time PCR for detection of Vibrio harveyi based on the vhhP2 gene[J]. J Fishery Sci China, 2014,21(3):611–620. DOI: 10.3724/SP.J.1118.2014.00611.
    [18] Liu CF, Shi XP, Chen Y, et al. Rapid diagnosis of sepsis with TaqMan‐Based multiplex real‐time PCR[J]. J Clin Lab Anal, 2018,32(2):e22256. DOI: 10.1002/jcla.22256.
    [19] Gosiewski T, Jurkiewicz-Badacz D, Sroka A, et al. A novel, nested, multiplex, real-time PCR for detection of bacteria and fungi in blood[J]. BMC Microbiol, 2014,14:144. DOI: 10.1186/1471−2180−14−144.
    [20] Dark P, Blackwood B, Gates S, et al. Accuracy of LightCycler® SeptiFast for the detection and identification of pathogens in the blood of patients with suspected sepsis: a systematic review protocol[J]. Intensive Care Med, 2015,41(1):21–33. DOI: 10.1007/s00134−014−3553−8.
    [21] Tocqueville V, Ferré S, Nguyen NHP, et al. Multilocus sequence typing of Mycoplasma hyorhinis strains identified by a real-time TaqMan PCR assay[J]. J Clin Microbiol, 2014,52(5):1664–1771. DOI: 10.1128/JCM.03437−13.
    [22] Kim SY, Hong YJ, Hwang SM, et al. Direct identification of Gram-positive bacteria and resistance determinants from blood cultures using a microarray-based nucleic acid assay: in-depth analysis of microarray data for undetermined results[J]. Clin Chem Lab Med, 2015,53(7):1013–1024. DOI: 10.1515/cclm−2014−0669.
    [23] Nölling J, Rapireddy S, Amburg JI, et al. Duplex DNA-invading γ-modified peptide nucleic acids enable rapid identification of bloodstream infections in whole blood[J]. mBio, 2016,7(2):e00345–16. DOI: 10.1128/mBio.00345−16.
    [24] De Luca Ferrari M, Resende MR, Sakai K, et al. Visual analysis of DNA microarray data for accurate molecular identification of Non-albicans Candida isolates from patients with candidemia episodes[J]. J Clin Microbiol, 2013,51(11):3826–3829. DOI: 10.1128/JCM.01050−13.
    [25] Kohlmann R, Hoffmann A, Geis G, et al. MALDI-TOF mass spectrometry following short incubation on a solid medium is a valuable tool for rapid pathogen identification from positive blood cultures[J]. Int J Med Microbiol, 2015,305(4/5):469–479. DOI: 10.1016/j.ijmm.2015.04.004.
    [26] Lagacé-Wiens P. Matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF/MS)-based identification of pathogens from positive blood culture bottles[M]//Mancini N. Sepsis: diagnostic methods and protocols. New York: Humana Press, 2015: 47-55. DOI:  10.1007/978−1−4939−1776−1_5.
    [27] Croxatto A, Prod'Hom G, Durussel C, et al. Preparation of a blood culture pellet for rapid bacterial identification and antibiotic susceptibility testing[J]. J Vis Exp, 2014(92):e51985. DOI: 10.3791/51985.
    [28] Verroken A, Defourny L, Lechgar L, et al. Reducing time to identification of positive blood cultures with MALDI-TOF MS analysis after a 5-h subculture[J]. Eur J Clin Microbiol Infect Dis, 2015,34(2):405–413. DOI: 10.1007/s10096−014−2242−4.
    [29] Arabestani MR, Fazzeli H, Nasr Esfahani B. Identification of the most common pathogenic bacteria in patients with suspected sepsis by multiplex PCR[J]. J Infect Dev Ctries, 2014,8(4):461–468. DOI: 10.3855/jidc.3856.
    [30] Ziegler I, Fagerström A, Strålin K, et al. Evaluation of a commercial multiplex PCR assay for detection of pathogen DNA in blood from patients with suspected sepsis[J]. PLoS One, 2016,11(12):e0167883. DOI: 10.1371/journal.pone.0167883.
    [31] Mwaigwisya S, Assiri RAM, O'Grady J. Emerging commercial molecular tests for the diagnosis of bloodstream infection[J]. Expert Rev Mol Diagn, 2015,15(5):681–692. DOI: 10.1586/14737159.2015.1029459.
    [32] 陈柱. 基于磁分离的现场核酸检测平台若干关键技术研究[D]. 南京: 东南大学, 2016.

    Chen Z. Study on key technologies of on-site nucleic acid detection platform based on magnetic separation[D]. Nanjing: Southeast University, 2016.
    [33] Vutukuru MR, Sharma DK, Ragavendar MS, et al. A rapid, highly sensitive and culture-free detection of pathogens from blood by positive enrichment[J]. J Microbiol Methods, 2016,131:105–109. DOI: 10.1016/j.mimet.2016.10.008.
    [34] Lopes ALK, Cardoso J, dos Santos FRCC, et al. Development of a magnetic separation method to capture sepsis associated bacteria in blood[J]. J Microbiol Methods, 2016,128:96–101. DOI: 10.1016/j.mimet.2016.07.012.
    [35] 赵瑞雪, 杜美红, 李静雯, 等. 国产沙门氏菌免疫磁珠的制备及其应用[J]. 食品安全质量检测学报,2018,9(4):843–850. DOI: 10.3969/j.issn.2095−0381.2018.04.027.

    Zhao RX, Du MH, Li JW, et al. Preparation and application of domestic anti-Salmonella immunomagnetic beads[J]. J Food Saf Qual, 2018,9(4):843–850. DOI: 10.3969/j.issn.2095−0381.2018.04.027.
    [36] Gao J, Jeffries L, Mach KE, et al. A multiplex electrochemical biosensor for bloodstream infection diagnosis[J]. SLAS Technol, 2017,22(4):466–474. DOI: 10.1177/2211068216651232.
    [37] da Silva AR, de Andrade Neto JB, da Silva CR, et al. Berberine antifungal activity in fluconazole-resistant pathogenic yeasts: action mechanism evaluated by flow cytometry and biofilm growth inhibition in Candida spp.[J]. Antimicrob Agents Chemother, 2016,60(6):3551–3557. DOI: 10.1128/AAC.01846−15.
  • 2019-0073 血源性病原菌早期诊断技术研究进展.docx
  • 加载中
计量
  • 文章访问数:  10885
  • HTML全文浏览量:  2423
  • PDF下载量:  57
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-03-01
  • 网络出版日期:  2019-08-16
  • 刊出日期:  2019-09-01

目录

    /

    返回文章
    返回

    在线交流

    防诈骗公告

    近期有不法分子以本刊编辑身份添加作者微信,请务必提高警惕!本刊关于稿件的一切事项通知均采用编辑部唯一邮箱(jbjc@icdc.cn)和座机(010-58900732)联系作者,且在录用稿件后仅收取版面费,无其他任何名目费用(如审稿费和加急费等),非编辑部邮箱发送的本刊收费用通知等均为诈骗,不要随意汇入款项!如有可疑及时致电编辑部核实确认!