浙江省宁波市耐多药结核分枝杆菌吡嗪酰胺耐药特征及与二线抗结核药物耐药关系

车洋 杨天池 林相 薄丁旖

车洋, 杨天池, 林相, 薄丁旖. 浙江省宁波市耐多药结核分枝杆菌吡嗪酰胺耐药特征及与二线抗结核药物耐药关系[J]. 疾病监测, 2020, 35(3): 237-241. doi: 10.3784/j.issn.1003-9961.2020.03.013
引用本文: 车洋, 杨天池, 林相, 薄丁旖. 浙江省宁波市耐多药结核分枝杆菌吡嗪酰胺耐药特征及与二线抗结核药物耐药关系[J]. 疾病监测, 2020, 35(3): 237-241. doi: 10.3784/j.issn.1003-9961.2020.03.013
Yang Che, Tianchi Yang, Xiang Lin, Dingyi Bo. Characteristics of Pyrazinamide resistance in multidrug-resistant Mycobacterium tuberculosis and its correlation with second-line drug resistance[J]. Disease Surveillance, 2020, 35(3): 237-241. doi: 10.3784/j.issn.1003-9961.2020.03.013
Citation: Yang Che, Tianchi Yang, Xiang Lin, Dingyi Bo. Characteristics of Pyrazinamide resistance in multidrug-resistant Mycobacterium tuberculosis and its correlation with second-line drug resistance[J]. Disease Surveillance, 2020, 35(3): 237-241. doi: 10.3784/j.issn.1003-9961.2020.03.013

浙江省宁波市耐多药结核分枝杆菌吡嗪酰胺耐药特征及与二线抗结核药物耐药关系

doi: 10.3784/j.issn.1003-9961.2020.03.013
基金项目: 宁波市自然科学基金(No. 2019A610385,No. 2019A610386)
详细信息
    作者简介:

    车洋,男,浙江省宁波市人,硕士,副主任技师,主要从事结核病防制研究

    通讯作者:

    车洋,Tel:0574–87279131 Email:13805876046@163.com

  • 中图分类号: R52

Characteristics of Pyrazinamide resistance in multidrug-resistant Mycobacterium tuberculosis and its correlation with second-line drug resistance

Funds: This study was supported by Natural Science Foundation of Ningbo (No. 2019A610385, No. 2019A610386)
More Information
  • 摘要: 目的研究结核分枝杆菌(MTB)对吡嗪酰胺耐药特征及其与二线抗结核药物耐药相关性。方法以2015 — 2017年浙江省宁波地区结核病耐药监测收集的110例耐多药结核病(MDR-TB)病例作为研究对象,采用1%比例法对其进行5种二线抗结核药物(氧氟沙星、左氧氟沙星、卡那霉素、阿米卡星、卷曲霉素)的耐药检测。 同时应用BACTEC MGIT 960 系统检测所有MDR-MTB的吡嗪酰胺耐药性,采用PCR DNA直接测序法检测MDR-MTB的pncA基因突变特征。结果110株MDR-MTB中吡嗪酰胺耐药率为59.09%(65/110),pncA基因突变率为50.91%(56/110)。 吡嗪酰胺耐药株中的基因突变率83.08%(54/65)与吡嗪酰胺敏感株中的基因突变率4.44%(2/45)比较,差异有统计学意义(χ2=65.787, P<0.001)。 pncA基因突变类型为42种,以点突变类型为主92.86%(39/42)。 耐链霉素、耐乙胺丁醇、耐氧氟沙星、耐左氧氟沙星及准广泛耐药(Pre-XDR)与MDR-MTB耐吡嗪酰胺相关。结论本地区MDR-MTB耐吡嗪酰胺形势较为严峻,MDR-MTB耐吡嗪酰胺与二线抗结核药物氧氟沙星、左氧氟沙星及Pre-XDR的耐药相关。
  • 表  1  耐多药结核分枝杆菌在不同耐药谱中的吡嗪酰胺耐药情况

    Table  1.   Drug resistance profiles of PZA resistant MDR M. tuberculosis isolates

    耐药谱类型分组耐多药结核分枝杆菌菌株
    PZA耐药数(株)全部构成比(%)
    单纯耐多药
     INH+RIF 621 28.57
     INH+RIF+STR 920 45.00
     INH+RIF+EMB 614 42.86
     INH+RIF+STR+EMB1316 81.25
     小计34 71 47.89
    准广泛耐药
     INH+RIF+OFLX 1 1100.00
     INH+RIF+OFLX+LVX 5 5100.00
     INH+RIF+STR+OFLX 1 2 50.00
     INH+RIF+STR+OFLX+LVX 5 8 62.50
     INH+RIF+EMB+LVX 0 1 0.00
     INH+RIF+EMB+OFLX+LVX 2 2100.00
     INH+RIF+STR+EMB+LVX 1 1100.00
     INH+RIF+STR+EMB+OFLX+LVX 9 9100.00
     INH+RIF+STR+EMB+KAN 0 1 0.00
     INH+RIF+STR+EMB+KAN+AMK 1 1100.00
     INH+RIF+STR+EMB+KAN+
     AMK+CAP
    0 1 0.00
     小计25 32 78.13
    广泛耐药
     INH+RIF+KAN+AMK+OFLX+LVX 1 1100.00
     INH+RIF+STR+EMB+KAN+
     OFLX+LVX
    1 1100.00
     INH+RIF+STR+EMB+KAN+
     AMK+OFLX+LVX
    2 2100.00
     INH+RIF+STR+EMB+AMK+
     CAP+ OFLX+LVX
    1 1100.00
     INH+RIF+STR+EMB+KAN+
     AMK+CAP+OFLX+LVX
    1 2 50.00
     小计 6 7 85.71
      注:INH. 异烟肼;RFP. 利福平;SM. 链霉素;EMB. 乙胺丁醇;OFX. 氧氟沙星;LVX. 左氧氟沙星;KAN. 卡那霉素;AMK. 阿米卡星;CAP. 卷曲霉素;PZA.吡嗪酰胺
    下载: 导出CSV

    表  2  耐多药结核分枝杆菌吡嗪酰胺耐药相关因素分析

    Table  2.   Risk factors associated with PZA resistance in 110 MDR M. tuberculosis isolates

    特征全部菌株(n=110)PZA耐药菌(n=65)PZA敏感菌(n=45)χ2P
    性别
     男77(70.00)41(63.08)36(80.00)
     女33(30.00)24(36.92) 9(20.00) 3.6260.057
    年龄组(岁)
     <3019(17.27) 9(13.85)10(22.22)
     30~5961(55.46)37(56.92)24(53.33) 1.0470.306
     ≥6030(27.27)19(29.23)11(24.45) 1.2110.271
    常住
     是58(52.73)38(58.46)20(44.44)
     否52(47.27)27(41.54)25(55.56) 2.0960.148
    治疗史
     初治45(40.91)21(32.31)24(53.33)
     复治65(59.09)44(67.69)21(46.67) 4.8630.027
    空洞
     是65(59.09)39(60.00)26(57.78)
     否45(40.91)26(40.00)19(42.22) 0.0540.816
    初始痰检
     阴性 7(6.36)6(9.23)1(2.22)
     阳性103(93.64)59(90.77)44(97.78) 1.1740.279
    pncA基因突变
     是56(50.91)54(83.08)2(4.44)
     否54(49.09)11(16.92)43(95.56)65.787<0.001
    耐药
     链霉素65(59.09)44(67.69)21(46.67) 4.8630.027
     乙胺丁醇52(47.27)37(56.92)15(33.33) 5.9370.015
     氧氟沙星33(30.00)28(43.08) 5(11.11)12.939<0.001
     左氧氟沙星33(30.00)28(43.08) 5(11.11)12.939<0.001
     卡那霉素9(8.18)6(9.23)3(6.67) 0.0170.898
     阿米卡星8(7.27)6(9.23)2(4.44) 0.3330.564
     卷曲霉素4(3.64)2(3.08)2(4.44) 0.0001.000
     准广泛耐药32(29.09)25(38.46) 7(15.56) 6.7640.009
     广泛耐药7(6.36)6(9.23)1(2.22) 1.1740.279
      注:PZA.吡嗪酰胺;括号外数据为菌株数,括号内数据为构成比(%);−. 无数据
    下载: 导出CSV

    表  3  耐多药结核分枝杆菌pncA基因突变情况

    Table  3.   Mutations of pncA gene in MDR M. tuberculosis isolates

    pncA基因突变吡嗪酰胺
    敏感性
    菌数(株)
    核苷酸突变类型氨基酸突变类型
    T14-G Ile5-Ser R 2
    T17-C Ile6-Thr R 2
    G19-T Val7-Phe R 1
    T20-G Val7-Gly R 3
    A23-G Asp8-Gly S 1
    A29-C Glin10-Pro R 2
    A35-C Asp12-Ala R 1
    T40-G Cys14-Gly R 1
    T56-G Leu19-Arg R 1
    G71-A Gly24-Asp R 1
    T100-G Tyr34-Asp R 1
    A139-G Thr47-Ala R 1
    A142-G Lys48-Glu R 1
    C151-T His51-Tyr R 2
    A170-C His57-Pro R 1
    C184-A Pro62-Thr R 1
    C206-G Pro69-Arg R 1
    A226-C Thr76-Pro S 1
    A287-C Lys96-Thr R 1
    295位缺失T 移码突变 R 1
    C312-A Ser104-Arg R 1
    G314-A Gly105-Asp R 1
    G322-A Gly108-Arg R 1
    A329-G Asp110-Gly R 1
    A345-C Pro115-Pro R 1
    T347-G Leu116-Arg R 1
    C372-A Gly124-Gly R 1
    T374-G Val125-Gly R 1
    392-393位置插入GG 移码突变 R 3
    G394-T Gly132-Cys R 1
    C401-T Ala134-Val R 1
    A403-C Thr135-Pro R 1
    A407-C Asp136-Ala R 2
    A410-C His137-Pro R 3
    G415-C Val139-Leu R 1
    T416-G Val139-Ala R 2
    A424-G Thr142-Ala R 3
    T464-G Val155-Gly R 1
    T470-G Val157-Gly R 1
    A478-C Thr160-Pro R 2
    497位置插入G 移码突变 R 1
    G538-T Val180-Phe R 2
      注:R. 吡嗪酰胺耐药; S. 吡嗪酰胺敏感
    下载: 导出CSV
  • [1] World Health Organization. Global tuberculosis report 2019[M]. Geneva: World Health Organization, 2019.
    [2] Zumla AI, Gillespie SH, Hoelscher M, et al. New antituberculosis drugs, regimens, and adjunct therapies: needs, advances, and future prospects[J]. Lancet Infect Dis, 2014,14(4):327–340. DOI: 10.1016/S1473-3099(13)70328−1.
    [3] Budzik JM, Jarlsberg LG, Higashi J, et al. Pyrazinamide resistance, Mycobacterium tuberculosis lineage and treatment outcomes in San Francisco, California[J]. PLoS One, 2014,9(4):e95645. DOI: 10.1371/journal.pone.0095645.
    [4] Anthony RM, Den Hertog A, Mansjö M, et al. New insights into the mechanism of action of Pyrazinamide, implications for susceptibility testing, and future regimens[J]. Int J Mycobacteriol, 2016,5 Suppl 1:S71–72. DOI: 10.1016/j.ijmyco.2016.08.009.
    [5] Yadon AN, Maharaj K, Adamson JH, et al. A comprehensive characterization of PncA polymorphisms that confer resistance to Pyrazinamide[J]. Nat Commun, 2017,8(1):588. DOI: 10.1038/s41467-017-00721-2.
    [6] 中国防痨协会. 耐药结核病化学治疗指南(2019年简版)[J]. 中国防痨杂志,2019,41(10):1025–1073. DOI: 10.3969/j.issn.1000−6621.2019.10.001.

    China Anti-tuberculosis Association. Guidelines for chemotherapy of drug resistant tuberculosis[J]. Chin J Antituberc, 2019,41(10):1025–1073. DOI: 10.3969/j.issn.1000−6621.2019.10.001.
    [7] 中国防痨协会基础专业委员会. 结核病诊断实验室检验规程[M]. 北京: 中国教育文化出版社, 2006: 49–51.

    China Anti-tuberculosis Association Foundation Committe. Laboratory testing procedures for tuberculosis diagnosis[M]. Beijing: China Education Culture Publishing House , 2006: 49–51.
    [8] Zhang YM, Zhang J, Cui P, et al. Identification of novel efflux proteins Rv0191, Rv3756c, Rv3008, and Rv1667c involved in Pyrazinamide resistance in Mycobacterium tuberculosis[J]. Antimicrob Agents Chemother, 2017,61(8):e00940–17. DOI: 10.1128/AAC.00940−17.
    [9] Ceqielski JP, Kurbatova E, van der Walt M, et al. Multidrug-resistant tuberculosis treatment outcomes in relation to treatment and initial versus acquired second-line drug resistance[J]. Clin Infect Dis, 2016,62(4):418–430. DOI: 10.1093/cid/civ910.
    [10] Bastos ML, Hussain H, Weyer K, et al. Treatment outcomes of patients with multidrug-resistant and extensively drug-resistant tuberculosis according to drug susceptibility testing to first- and second-line drugs: an individual patient data meta-analysis[J]. Clin Infect Dis, 2014,59(10):1364–1374. DOI: 10.1093/cid/ciu619.
    [11] Pang Y, Zhu DM, Zheng HW, et al. Prevalence and molecular characterization of Pyrazinamide resistance among multidrug-resistant Mycobacterium tuberculosis isolates from southern China[J]. BMC Infect Dis, 2017,17(1):711. DOI: 10.1186/s12879−017−2761−6.
    [12] Diacon AH, Dawson R, Von Groote-Bidlingmaier F, et al. Bactericidal activity of Pyrazinamide and clofazimine alone and in combinations with pretomanid and bedaquiline[J]. Am J Respir Crit Care Med, 2015,191(8):943–953. DOI: 10.1164/rccm.201410−1801OC.
    [13] Dawson R, Diacon AH, Everitt D, et al. Efficiency and safety of the combination of moxifloxacin, pretomanid (PA-824), and Pyrazinamide during the first 8 weeks of antituberculosis treatment: a phase 2b, open-label, partly randomised trial in patients with drug-susceptible or drug-resistant pulmonary tuberculosis[J]. Lancet, 2015,385(9979):1738–1747. DOI: 10.1016/S0140−6736(14)62002−X.
    [14] Li DG, Hu Y, Werngren J, et al. Multicenter study of the emergence and genetic characteristics of Pyrazinamide-resistant tuberculosis in China[J]. Antimicrob Agents Chemother, 2016,60(9):5159–5166. DOI: 10.1128/AAC.02687−15.
    [15] Driesen M, Kondo Y, De Jong BC, et al. Evaluation of a novel line probe assay to detect resistance to Pyrazinamide, a key drug used for tuberculosis treatment[J]. Clin Microbiol Infect, 2018,24(1):60–64. DOI: 10.1016/j.cmi.2017.05.026.
    [16] Khan MT, Malik SI, Ali S, et al. Prevalence of Pyrazinamide resistance in Khyber Pakhtunkhwa, Pakistan[J]. Microb Drug Resist, 2018,24(9):1417–1421. DOI: 10.1089/mdr.2017.0234.
    [17] Gu YT, Yu X, Jiang GL, et al. Pyrazinamide resistance among multidrug-resistant tuberculosis clinical isolates in a national referral center of China and its correlations with pncA, rpsA, and panD gene mutations[J]. Diagn Microbiol Infect Dis, 2016,84(3):207–211. DOI: 10.1016/j.diagmicrobio.2015.10.017.
    [18] 陈燕, 赵丽丽, 孙庆, 等. 耐多药结核分枝杆菌耐药相关基因突变特征分析[J]. 疾病监测,2014,29(4):305–309. DOI: 10.3784/j.issn.1003−9961.2014.04.014.

    Chen Y, Zhao LL, Sun Q, et al. Characteristics of drug resistance associated mutations in multi-drug resistant Mycobacterium tuberculosis[J]. Dis Surveill, 2014,29(4):305–309. DOI: 10.3784/j.issn.1003−9961.2014.04.014.
    [19] 刘海灿, 赵丽丽, 赵秀芹, 等. 耐多药结核分枝杆菌二线药物耐药相关基因的分析[J]. 疾病监测,2016,31(6):471–476. DOI: 10.3784/j.issn.1003−9961.2016.06.007.

    Liu HC, Zhao LL, Zhao XQ, et al. Analysis on second line drug resistance related genes in multidrug-resistant Mycobacterium tuberculosis isolates[J]. Dis Surveill, 2016,31(6):471–476. DOI: 10.3784/j.issn.1003−9961.2016.06.007.
    [20] Huy NQ, Lucie C, Hoa TTT, et al. Molecular analysis of Pyrazinamide resistance in Mycobacterium tuberculosis in Vietnam highlights the high rate of Pyrazinamide resistance-associated mutations in clinical isolates[J]. Emerg Microbes Infect, 2017,6(10):e86. DOI: 10.1038/emi.2017.73.
    [21] Allana S, Shashkina E, Mathema B, et al. pncA gene mutations associated with Pyrazinamide resistance in drug-resistant tuberculosis, South Africa and Georgia[J]. Emerg Infect Dis, 2017,23(3):491–495. DOI: 10.3201/eid2303.161034.
    [22] Rahman A, Ferdous SS, Ahmed S, et al. Pyrazinamide susceptibility and pncA mutation profiles of Mycobacterium tuberculosis among multidrug-resistant tuberculosis patients in Bangladesh[J]. Antimicrob Agents Chemother, 2017,61(9):e00511–17. DOI: 10.1128/AAC.00511−17.
  • 2019-0670浙江省宁波市耐多药结核分枝杆菌吡嗪酰胺耐药特征及与二线抗结核药物耐药关系.docx
  • 加载中
计量
  • 文章访问数:  1974
  • HTML全文浏览量:  824
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-02
  • 网络出版日期:  2020-03-02
  • 刊出日期:  2020-03-01

目录

    /

    返回文章
    返回

    在线交流