显微共聚焦拉曼技术在细菌分类鉴定中的应用

高鹏亚 苏英会 孙晖 滕中秋 吴长德 史芸 袁洪福 刘洋 徐雪芳

高鹏亚, 苏英会, 孙晖, 滕中秋, 吴长德, 史芸, 袁洪福, 刘洋, 徐雪芳. 显微共聚焦拉曼技术在细菌分类鉴定中的应用[J]. 疾病监测, 2021, 36(1): 74-81. doi: 10.3784/jbjc.202007070229
引用本文: 高鹏亚, 苏英会, 孙晖, 滕中秋, 吴长德, 史芸, 袁洪福, 刘洋, 徐雪芳. 显微共聚焦拉曼技术在细菌分类鉴定中的应用[J]. 疾病监测, 2021, 36(1): 74-81. doi: 10.3784/jbjc.202007070229
Gao Pengya, Su Yinghui, Sun Hui, Teng Zhongqiu, Wu Changde, Shi Yun, Yuan Hongfu,  Liu  yang, Xu Xuefang. Application of micro confocal Raman technique in classification and identification of bacteria[J]. Disease Surveillance, 2021, 36(1): 74-81. doi: 10.3784/jbjc.202007070229
Citation: Gao Pengya, Su Yinghui, Sun Hui, Teng Zhongqiu, Wu Changde, Shi Yun, Yuan Hongfu,  Liu  yang, Xu Xuefang. Application of micro confocal Raman technique in classification and identification of bacteria[J]. Disease Surveillance, 2021, 36(1): 74-81. doi: 10.3784/jbjc.202007070229

显微共聚焦拉曼技术在细菌分类鉴定中的应用

doi: 10.3784/jbjc.202007070229
基金项目: 国家重点研发计划(No.2018YFC1603800);2019年北京联合大学高水平人才培养交叉计划–实培计划毕业设计项目
详细信息
    作者简介:

    高鹏亚,男,河南省周口市人,硕士在读,主要从事肉毒梭菌分析研究,Email:1298318581@qq.com

    苏英会,女,河北省邢台市人,本科,参与学校启明星项目,Email:1594921761@qq.com

    通讯作者:

    刘洋,Tel:13683515592,Email:liuyang.cas@buu.edu.cn

    徐雪芳,Tel:010–58900748,Email:xuxuefang@icdc.cn

  • 中图分类号: R211;R372

Application of micro confocal Raman technique in classification and identification of bacteria

Funds: This study was supported by the foundation of the National Key R&D Program of China (No.2018YFC1603800) and Graduation Project of Beijing Union University High Level Talents Training Cross Program Practical Training Plan of 2019
More Information
  • 摘要: 拉曼光谱可以用于识别和描述微生物的特征,作为当今微生物分类鉴定研究的热点。 相比于传统的微生物分离培养技术和分子生物学鉴定技术,拉曼技术具有免培养、快速和高效等优点。 随着光学领域拉曼技术和分子生物学的结合发展,使得微生物的鉴定变得更加高效快捷。 拉曼显微光谱结合稳定同位素探针、荧光原位杂交和光镊技术,为研究生态系统中不可培养微生物的功能和生理提供了一种独立的方法。 显微共聚焦拉曼技术在细菌分类鉴定中具有巨大的应用前景。 本文主要阐述拉曼光谱技术的基础知识和显微共聚焦拉曼技术在细菌分类鉴定中的研究进展,并对该技术的优缺点进行总结和评价,旨在为拉曼光谱技术应用于微生物学的研究提供参考。
  • [1] 李琳, 李槿年, 余为一. 细菌分类鉴定方法的研究概况[J]. 安徽农业科学,2004,32(3):549–551. DOI:10.3969/j.issn.0517−6611.2004.03.088.

    Li L, Li JN, Yu WY. Brief introduction of the method of bacterial classification and identification[J]. J Anhui Agric Sci, 2004, 32(3): 549–551. DOI: 10.3969/j.issn.0517−6611.2004.03.088.
    [2] Mock M, Fouet A. Anthrax[J]. Annu Rev Microbiol, 2001, 55: 647–671. DOI:  10.1146/annurev.micro.55.1.647.
    [3] Popp J, Krafft C, Mayerhöfer T. Modern Raman spectroscopy for biomedical applications: A variety of Raman spectroscopical techniques on the threshold of biomedical applications[J]. Optik Photon, 2011, 6(4): 24–28. DOI:  10.1002/opph.201190383.
    [4] Huang WE, Li MQ, Jarvis RM, et al. Shining light on the microbial world: the application of Raman microspectroscopy[J]. Adv Appl Microbiol, 2010, 70: 153–186. DOI: 10.1016/S0065−2164(10)70005−8.
    [5] Puppels GJ, De Mul FFM, Otto C, et al. Studying single living cells and chromosomes by confocal Raman microspectroscopy[J]. Nature, 1990, 347(6290): 301–303. DOI:  10.1038/347301a0.
    [6] Huang WE, Griffiths RI, Thompson IP, et al. Raman microscopic analysis of single microbial cells[J]. Anal Chem, 2004, 76(15): 4452–4458. DOI:  10.1021/ac049753k.
    [7] Ayala OD, Wakeman CA, Pence IJ, et al. Characterization of bacteria causing acute otitis media using Raman microspectroscopy[J]. Anal Methods, 2017, 9(12): 1864–1871. DOI:  10.1039/C7AY00128B.
    [8] Hutsebaut D, Maquelin K, De Vos P, et al. Effect of culture conditions on the achievable taxonomic resolution of Raman spectroscopy disclosed by three Bacillus species[J]. Anal Chem, 2004, 76(21): 6274–6281. DOI:  10.1021/ac049228l.
    [9] Stöckel S, Schumacher W, Meisel S, et al. Raman spectroscopy-compatible inactivation method for pathogenic endospores[J]. Appl Environ Microbiol, 2010, 76(9): 2895–2907. DOI: 10.1128/AEM.02481−09.
    [10] 狄伶, 刘宇飞, 李铮. 细胞前处理及其拉曼光谱检测[J]. 实验室研究与探索,2013,32(10):328–330, 339.

    Di L, Liu YF, Li Z. Cell pretratments and its raman spectroscopy detection[J]. Res Explorat Lab, 2013, 32(10): 328–330, 339.
    [11] Yao N, Wang ZL. Handbook of microscopy for nanotechnology[J]. Materials Today, 2005, 8(7): 63. DOI: 10.1016/S1369−7021(05)70989−5.
    [12] 杨勇骥. 实用生物医学电子显微镜技术[M]. 上海: 第二军医大学出版社, 2003.

    Yang YJ. Applied biomedical electron microscope technology[M]. Shanghai: The Second Military Medical University Press, 2003.
    [13] Hanson L, Lin ZC, Xie C, et al. Characterization of the cell-nanopillar interface by transmission electron microscopy[J]. Nano Lett, 2012, 12(11): 5815–5820. DOI:  10.1021/nl303163y.
    [14] Xie CA, Chen D, Li YQ. Raman sorting and identification of single living micro-organisms with optical tweezers[J]. Opt Lett, 2005, 30(14): 1800–1802. DOI:  10.1364/OL.30.001800.
    [15] Xie CA, Li YQ. Confocal micro-Raman spectroscopy of single biological cells using optical trapping and shifted excitation difference techniques[J]. J Appl Phys, 2003, 93(5): 2982–2986. DOI:  10.1063/1.1542654.
    [16] 蔡天净, 唐瀚. Savitzky-Golay平滑滤波器的最小二乘拟合原理综述[J]. 数字通信,2011,38(1):63–68, 82. DOI:10.3969/j.issn.1001−3824.2011.01.017.

    Cai TJ, Tang H. Savitzky-Golay A review of least-squares[J]. Digit Commun, 2011, 38(1): 63–68, 82. DOI: 10.3969/j.issn.1001−3824.2011.01.017.
    [17] 邹文龙, 蔡志坚, 吴建宏. 拉曼光谱测量中的荧光抑制方法综述[J]. 光学仪器,2010,32(5):89–94. DOI:10.3969/j.issn.1005−5630.2010.05.019.

    Zou WL, Cai ZJ, Wu JH. Review of fluorescence rejection in raman spectroscopy measurement[J]. Opt Instrum, 2010, 32(5): 89–94. DOI: 10.3969/j.issn.1005−5630.2010.05.019.
    [18] Wang HQ, Zhao JH, Lee AMD, et al. Improving skin Raman spectral quality by fluorescence photobleaching[J]. Photodiagnosis Photodyn Ther, 2012, 9(4): 299–302. DOI:  10.1016/j.pdpdt.2012.02.001.
    [19] Schmidt M, Hourfar MK, Wahl A, et al. Fluorescence quencher improves SCANSYSTEMTM for rapid bacterial detection[J]. Vox Sang, 2006, 90(4): 276–278. DOI: 10.1111/j.1423−0410.2006.00763.x.
    [20] 陈珊. 拉曼光谱背景扣除算法及其应用研究[D]. 长沙: 中南大学, 2011.

    Chen S. Raman spectral Background subtraction algorithm and its application[D]. Changsha: Central South University, 2011 .
    [21] Wold S. Nonlinear partial least squares modelling Ⅱ. Spline inner relation[J]. Chemometr Intellig Lab Syst, 1992, 14(1/3): 71–84. DOI: 10.1016/0169−7439(92)80093−J.
    [22] 倪永年. 化学计量学在分析化学中的应用[D]. 北京: 科学出版社, 2004.

    Ni YN. Application of chemometrics in analytical chemistry[D]. Beijing: Science Press, 2004.
    [23] 赵蔷. 主成分分析方法综述[J]. 软件工程,2016,19(6):1–3. DOI:10.3969/j.issn.1008−0775.2016.06.001.

    Zhao Q. A review of principal component analysis[J]. Softw Eng, 2016, 19(6): 1–3. DOI: 10.3969/j.issn.1008−0775.2016.06.001.
    [24] Kahraman M, Yazıcı MM, Şahin F, et al. Convective assembly of bacteria for surface-enhanced raman scattering[J]. Langmuir, 2008, 24(3): 894–901. DOI:  10.1021/la702240q.
    [25] Grun J, Manka CK, Nikitin S, et al. Identification of bacteria from two-dimensional resonant-Raman spectra[J]. Anal Chem, 2007, 79(14): 5489–5493. DOI:  10.1021/ac070681h.
    [26] Xie C, Mace J, Dinno MA, et al. Identification of single bacterial cells in aqueous solution using confocal laser tweezers Raman spectroscopy[J]. Anal Chem, 2005, 77(14): 4390–4397. DOI:  10.1021/ac0504971.
    [27] Chan JW, Esposito AP, Talley CE, et al. Reagentless identification of single bacterial spores in aqueous solution by confocal laser tweezers Raman spectroscopy[J]. Anal Chem, 2004, 76(3): 599–603. DOI:  10.1021/ac0350155.
    [28] Strola SA, Baritaux JC, Schultz E, et al. Single bacteria identification by Raman spectroscopy[J]. J Biomed Opt, 2014, 19(11): 111610. DOI:  10.1117/1.JBO.19.11.111610.
    [29] Jarvis RM, Brooker A, Goodacre R. Surface-enhanced raman spectroscopy for bacterial discrimination utilizing a scanning electron microscope with a raman spectroscopy interface[J]. Anal Chem, 2004, 76(17): 5198–5202. DOI:  10.1021/ac049663f.
    [30] 苏永波, 司民真, 张德清, 等. 三种致病性细菌的SERS光谱研究[J]. 光谱学与光谱分析,2012,32(7):99–102. DOI:10.3964/j.issn.1000−0593(2012)07−1825−04.

    Su YB, Si MZ, Zhang DQ, et al. SERS spectroscopy study of three pathogenic bacteria[J]. Spectrosc Spectr Anal, 2012, 32(7): 99–102. DOI: 10.3964/j.issn.1000−0593(2012)07−1825−04.
    [31] Athamneh AIM, Alajlouni RA, Wallace RS, et al. Phenotypic profiling of antibiotic response signatures in Escherichia coli using raman spectroscopy[J]. Antimicrob Agents Chemother, 2014, 58(3): 1302–1314. DOI: 10.1128/AAC.02098−13.
    [32] Kögler M, Itkonen J, Viitala T, et al. Assessment of recombinant protein production in E. coli with Time-Gated Surface Enhanced Raman Spectroscopy (TG-SERS)[J]. Sci Rep, 2020, 10(1): 2472. DOI: 10.1038/s41598−020−59091−3.
    [33] 吕璞, 龚继来, 王喜洋, 等. 表面增强拉曼散射技术鉴别大肠杆菌和志贺氏菌的研究[J]. 中国环境科学,2011,31(9):1523–1527.

    Lyu P, Gong JL, Wang XY, et al. Detection and discrimination of Escherichia coli and Shigella spp. using surface-enhanced Raman spectroscopy[J]. China Environ Sci, 2011, 31(9): 1523–1527.
    [34] Chen TJ, Zhao JC, Guo ZA, et al. Grafting of doxycycline imprinted polymers on silica surface for selective solid-phase extraction in beef samples[J]. Anal Methods, 2012, 4(12): 4237–4243. DOI:  10.1039/c2ay26084k.
    [35] 徐丽, 谢云飞, 姚卫蓉. 基于金胶的表面增强拉曼光谱(SERS)检测食源性致病菌[EB/OL].(2012–08–03)[2020–05–10]. http://www.paper.edu.cn/releasepaper/content/201208-13.

    Xu L, Xie YF, Yao WR. Surface-enhanced Raman spectroscopy (SERS) detection of food-borne pathogens based on gold glue[EB/OL].(2012–08–03)[2020–05–10]. http://www.paper.edu.cn/releasepaper/content/201208-13.
    [36] 王盼雪. 食品中细菌的快速检测、应用及抗生素抗性研究[D]. 杨凌: 西北农林科技大学, 2016.

    Wang PX. Rapid detection, application, and antibiotic resirtance of bacteria in food[D]. Yangling: Northwest A&F University, 2016.
    [37] 马小媛, 赵晨琛, 刘颖, 等. 金纳米材料在沙门氏菌SERS检测中的应用[C]//中国食品科学技术学会第十一届年会论文摘要集. 杭州: 中国食品科学技术学会, 2014.

    Ma XY, Zhao CC, Liu Y, et al. Application of gold nanomaterials in SERS detection of Salmonella[C]//Chinese Society of Food Science and Technology Annual Meeting. Hangzhou: China Society of Food Science and Technology, 2014.
    [38] Zhang H, Ma XY, Liu Y, et al. Gold nanoparticles enhanced SERS aptasensor for the simultaneous detection of Salmonella typhimurium and Staphylococcus aureus[J]. Biosens Bioelectron, 2015, 74: 872–877. DOI:  10.1016/j.bios.2015.07.033.
    [39] Muhamadali H, Weaver D, Subaihi A, et al. Chicken, beams, and Campylobacter: rapid differentiation of foodborne bacteria via vibrational spectroscopy and MALDI-mass spectrometry[J]. Analyst, 2016, 141(1): 111–122. DOI:  10.1039/C5AN01945A.
    [40] Liu K, Liu TT, Zhou NY. HbzF catalyzes direct hydrolysis of maleylpyruvate in the gentisate pathway of Pseudomonas alcaligenes NCIMB 9867[J]. Appl Environ Microbiol, 2013, 79(3): 1044–1047. DOI: 10.1128/AEM.02931−12.
    [41] Lu X, Weakley AT, Aston DE, et al. Examination of nanoparticle inactivation of Campylobacter jejuni biofilms using infrared and Raman spectroscopies[J]. J Appl Microbiol, 2012, 113(4): 952–963. DOI: 10.1111/j.1365−2672.2012.05373.x.
    [42] Lu XN, Rasco BA, Jabal JMF, et al. Investigating antibacterial effects of garlic (Allium sativum) concentrate and garlic-derived organosulfur compounds on Campylobacter jejuni by using fourier transform infrared spectroscopy, raman spectroscopy, and electron microscopy[J]. Appl Environ Microbiol, 2011, 77(15): 5257–5269. DOI: 10.1128/AEM.02845−10.
    [43] Balaikaite A, Chisanga M, Fisher K, et al. Ferulic acid decarboxylase controls oxidative maturation of the prenylated flavin mononucleotide cofactor[J]. ACS Chem Biol, 2020, 15(9): 2466–2475. DOI:  10.1021/acschembio.0c00456.
    [44] Breuch R, Klein D, Siefke E, et al. Differentiation of meat-related microorganisms using paper-based surface-enhanced Raman spectroscopy combined with multivariate statistical analysis[J]. Talanta, 2020, 219: 121315. DOI:  10.1016/j.talanta.2020.121315.
    [45] Li J, Wang CW, Shi LL, et al. Rapid identification and antibiotic susceptibility test of pathogens in blood based on magnetic separation and surface-enhanced Raman scattering[J]. Mikrochim Acta, 2019, 186(7): 475. DOI: 10.1007/s00604−019−3571−x.
    [46] Münchberg U, Rösch P, Bauer M, et al. Raman spectroscopic identification of single bacterial cells under antibiotic influence[J]. Anal Bioanal Chem, 2014, 406(13): 3041–3050. DOI: 10.1007/s00216−014−7747−2.
    [47] Kusić D, Kampe B, Rösch P, et al. Identification of water pathogens by Raman microspectroscopy[J]. Water Res, 2014, 48: 179–189. DOI:  10.1016/j.watres.2013.09.030.
    [48] Nicolaou N, Xu Y, Goodacre R. Fourier transform infrared and Raman spectroscopies for the rapid detection, enumeration, and growth interaction of the bacteria Staphylococcus aureus and Lactococcus lactis ssp. cremoris in milk[J]. Anal Chem, 2011, 83(14): 5681–5687. DOI:  10.1021/ac2008256.
    [49] Chu H, Huang YW, Zhao YP. Silver nanorod arrays as a surface-enhanced Raman scattering substrate for foodborne pathogenic bacteria detection[J]. Appl Spectrosc, 2008, 62(8): 622–931. DOI:  10.1366/000370208785284330.
    [50] Bousova K, Senyuva H, Mittendorf K. Quantitative multi-residue method for determination antibiotics in chicken meat using turbulent flow chromatography coupled to liquid chromatography–tandem mass spectrometry[J]. J Chromatogr A, 2013, 1274: 19–27. DOI:  10.1016/j.chroma.2012.11.067.
    [51] Wulf MWH, Willemse-Erix D, Verduin CM, et al. The use of Raman spectroscopy in the epidemiology of methicillin-resistant Staphylococcus aureus of human- and animal-related clonal lineages[J]. Clin Microbiol Infect, 2012, 18(2): 147–152. DOI: 10.1111/j.1469−0691.2011.03517.x.
    [52] Mottier P, Hammel YA, Gremaud E, et al. Quantitative high-throughput analysis of 16 (fluoro)quinolones in honey using automated extraction by turbulent flow chromatography coupled to liquid chromatography-tandem mass spectrometry[J]. J Agric Food Chem, 2008, 56(1): 35–43. DOI:  10.1021/jf072934d.
    [53] Krebber R, Hoffend FJ, Ruttmann F. Simple and rapid determination of enrofloxacin and ciprofloxacin in edible tissues by turbulent flow chromatography/tandem mass spectrometry (TFC–MS/MS)[J]. Analyt Chim Acta, 2009, 637(1/2): 208–213. DOI:  10.1016/j.aca.2008.11.006.
    [54] Gaus K, Rösch R, Petry R, et al. Classification of lactic acid bacteria with UV-resonance raman spectroscopy[J]. Biopolymers, 2006, 82(4): 286–290. DOI:  10.1002/bip.20448.
    [55] McMeekin T. Detecting pathogens in food[M]. Cambridge: Woodhead Publishing Limited, 2003.
    [56] Chan J, Fore S, Wachsmann-Hogiu S, et al. Raman spectroscopy and microscopy of individual cells and cellular components[J]. Laser Photon Rev, 2008, 2(5): 325–349. DOI:  10.1002/lpor.200810012.
    [57] Meisel S, Stöckel S, Rösch P, et al. Identification of meat-associated pathogens via Raman microspectroscopy[J]. Food Microbiol, 2014, 38: 36–43. DOI:  10.1016/j.fm.2013.08.007.
    [58] 解新方. 单增李斯特菌表面增强拉曼光谱检测技术研究[D]. 天津: 天津科技大学, 2015.

    Xie XF. Study on detection of Listeria monocytogenes by surface enhanced raman spectroscopy[D]. Tianjin: Tianjin University of Science & Technology, 2015.
    [59] 史芸. 显微共聚焦拉曼光谱法肉毒梭菌鉴别研究[D]. 北京: 北京化工大学, 2019.

    Shi Y. Identification of Clostridium botulinum by microconfocal Raman spectroscopy[D]. Beijing: Beijing University of Chemical Technology, 2019.
    [60] Berus S, Witkowska E, Niciński K, et al. Surface-enhanced Raman scattering as a discrimination method of Streptococcus spp. and alternative approach for identifying capsular types of S. pneumoniae isolates[J]. Spectrochim Acta A Mol Biomol Spectrosc, 2020, 233: 118088. DOI:  10.1016/j.saa.2020.118088.
    [61] Kriem LS, Wright K, Ccahuana-Vasquez RA, et al. Confocal Raman microscopy to identify bacteria in oral subgingival biofilm models[J]. PLoS One, 2020, 15(5): e0232912. DOI:  10.1371/journal.pone.0232912.
    [62] Tayyarcan EK, Soykut EA, Boyaci IH. A Raman-spectroscopy-based approach for detection and discrimination of Streptococcus thermophilus and Lactobacillus bulgaricus phages at low titer in raw milk[J]. Folia Microbiol, 2018, 63(5): 627–636. DOI: 10.1007/s12223−018−0604−5.
    [63] Koya SK, Yurgelevic S, Brusatori M, et al. Rapid detection of Clostridium difficile toxins in stool by raman spectroscopy[J]. J Surg Res, 2019, 244: 111–116. DOI:  10.1016/j.jss.2019.06.039.
    [64] Stöckel S, Meisel S, Lorenz B, et al. Raman spectroscopic identification of Mycobacterium tuberculosis[J]. J Biophoton, 2017, 10(5): 727–734. DOI:  10.1002/jbio.201600174.
    [65] Kedia K, Wendler JP, Baker ES, et al. Application of multiplexed ion mobility spectrometry towards the identification of host protein signatures of treatment effect in pulmonary tuberculosis[J]. Tuberculosis, 2018, 112: 52–61. DOI:  10.1016/j.tube.2018.07.005.
    [66] Zyubin A, Rafalskiy V, Tcibulnikova A, et al. Surface-enhanced Raman spectroscopy for antiplatelet therapy effectiveness assessment[J]. Laser Phys Lett, 2020, 17(4): 045601. DOI: 10.1088/1612−202X/ab7be5.
    [67] Dina NE, Colniță A, Leopold N, et al. Rapid single-cell detection and identification of bacteria by using surface-enhanced raman spectroscopy[J]. Proced Technol, 2017, 27: 203–207. DOI:  10.1016/j.protcy.2017.04.086.
    [68] Berry D. Single cell isotope probing via raman microspectroscopy: a new way for functional analyses of microbes in environmental and medical samples (2014 DOE JGI Genomics of Energy & Environment Meeting)[C]. Calif: Walnut Creek, 2014.
  • 0229-显微共聚焦拉曼技术在细菌分类鉴定中的应用.docx
  • 加载中
计量
  • 文章访问数:  367
  • HTML全文浏览量:  156
  • PDF下载量:  68
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-07
  • 网络出版日期:  2020-12-18
  • 刊出日期:  2021-02-08

目录

    /

    返回文章
    返回

    在线交流

    防诈骗公告

    近期有不法分子以本刊编辑身份添加作者微信,请务必提高警惕!本刊关于稿件的一切事项通知均采用编辑部唯一邮箱(jbjc@icdc.cn)和座机(010-58900732)联系作者,且在录用稿件后仅收取版面费,无其他任何名目费用(如审稿费和加急费等),非编辑部邮箱发送的本刊收费用通知等均为诈骗,不要随意汇入款项!如有可疑及时致电编辑部核实确认!