-
摘要: 细菌活性检测是检验、评价和保藏的关键,快速、灵敏、特异和准确的细菌活性检测方法是十分重要的。目前,细菌活性可以根据细菌生长繁殖能力、新陈代谢能力、细胞膜的完整性以及复制转录能力原理进行检测。不同的检测原理会有不同的检测方法,平板培养计数法是最为经典的活性检测方法,PMA-qPCR、荧光染料结合流式细胞仪、单细胞拉曼分析技术等是新应用的方法。随着科学技术的不断发展和细菌活性检测的需求,优化的细菌活性检测方法层出不穷,但不同的细菌活性检测方法具有不同的优缺点。本文就目前细菌活性检测原理、方法、应用以及优缺点等方面进行描述,并探讨了细菌活性检测方法在细菌检验和保藏等方面的应用。Abstract: Bacterial activity detection is the key to inspection, evaluation and preservation. Rapid, sensitive, specific and accurate bacterial activity detection methods are very important. At present, bacterial activity can be measured according to the principles of bacterial growth and reproduction ability, metabolic ability, membrane integrity, and replication and transcription ability. Different detection principles will have different detection methods, plate culture counting method is the most classic activity detection method, PMA-qPCR, fluorescent dye-combined flow cytometry, single-cell Raman analysis technology is the new application of instruments. With the continuous development of science and technology and the demand of bacterial activity detection, optimized bacterial activity detection methods are emerging in an endless stream, but different bacterial activity detection methods have different advantages and disadvantages. In this paper, the principle, method, application, advantages and disadvantages of bacterial activity detection were described, and the application of bacterial activity detection method in bacterial inspection and preservation was discussed.
-
Key words:
- bacteria /
- Activity /
- Detection /
- Evaluate /
- preservation
-
表 1 细菌活性检测方法对比分析表
Table 1. Comparative analysis of bacterial activity detection methods
原理 方法 优点 不足
生长繁殖能力平板培养计数法 1.低成本
2.可区分活菌和死菌
3.无需样本富集1.所需时间较长(18-72h)
2.无法检测VBNC细菌,易造成假阴性结果
新陈代谢能力ATP生物发光法 1.操作简单
2.检测时间短(1-5分钟)1.提取ATP复杂
2.ATP易降解
氧化还原法1.操作简单 1.受浓度、温度等多种因素影响
2.指示剂有可能造成细胞毒性
单细胞拉曼技术1.无需培养细菌
2.无需标记细菌
3.快速、高效、自动化(整个过程只需要5h)1.需建立数据库和专业分析软件
2.在细菌活性检测领域应用较少
RT-PCR1.灵敏度较高
2.特异性较高
3.自动化操作节省人力
4.可区分活菌和死菌1.成本较高
2.mRNA的半衰期短,且易被降解,
可造成假阴性结果
细胞膜的完整性和
复制转录能力
PMA-qPCR1.灵敏度较高
2.特异性较高
3.自动化操作节省人力
4.可区分活菌和死菌1.无法完全去除死菌信号,可导致出现假阳性
2.无法区分具有完整细胞膜和无代谢活性的死菌
细胞膜的完整性
流式细胞仪1.可计数VBNC细菌
2.可区分活菌和死菌
3.所需时间短 (每秒达上万个单细胞或颗粒)
4.可提供详细细胞生理状态信息1.需荧光染料标记,可能损害细菌活性
2.成本高
3.依赖大型仪器
4.需专业人员操作 -
[1] GBD 2019 Antimicrobial Resistance Collaborators. Global mortality associated with 33 bacterial pathogens in 2019: a systematic analysis for the Global Burden of Disease Study 2019[J]. Lancet, 2022, 400(10369): 2221–2248. DOI: 10.1016/S0140−6736(22)02185−7. [2] Vikesland PJ, Wigginton KR. Nanomaterial enabled biosensors for pathogen monitoring - a review[J]. Environ Sci Technol, 2010, 44(10): 3656–3669. DOI: 10.1021/es903704z. [3] Jones KE, Patel NG, Levy MA, et al. Global trends in emerging infectious diseases[J]. Nature, 2008, 451(7181): 990–993. DOI: 10.1038/nature06536. [4] 王多春, 姜孟楠, 魏强. 病原微生物菌(毒)种国家标准株评价体系[J]. 中华实验和临床病毒学杂,2021,35(5):490–493. DOI:10.3760/cma.j.cn112866−20210714−00119.Wang DC, Jiang MN, Wei Q. Evaluation system of national standard strains of pathogenic microorganism[J]. Chin J Exp Clin Virol, 2021, 35(5): 490–493. DOI: 10.3760/cma.j.cn112866− 20210714−00119. [5] 邓颖. 基于流式细胞术的SYTO 9/PI细菌活性判定方法优化及其机理[D]. 广州: 暨南大学, 2020. DOI: 10.27167/d.cnki.gjinu.2020.001227.Deng Y. Optimization of bacterial cell viability assays with the fluorophores SYTO 9 and propidium iodide and its mechanism based on flow cytometry[D]. Guangzhou: Jinan University, 2020. DOI: 10.27167/d.cnki.gjinu.2020.001227. [6] Ramamurthy T, Ghosh A, Pazhani GP, et al. Current perspectives on viable but non-culturable (VBNC) pathogenic bacteria[J]. Front Public Health, 2014, 2: 103. DOI: 10.3389/fpubh.2014.00103. [7] Davis C. Enumeration of probiotic strains: review of culture-dependent and alternative techniques to quantify viable bacteria[J]. J Microbiol Methods, 2014, 103: 9–17. DOI: 10.1016/j.mimet.2014.04.012. [8] Oliver JD. The viable but nonculturable state in bacteria[J]. J Microbiol, 2005, 43 Spec No: 93−100. [9] 曾尼卡有限公司. 活细菌: 中国, 94191905.6[P]. 1996−05−01.Zenica LTD. Live bacteria: CN, 94191905. 6[P]. 1996−05−01. [10] 贺纪正, 曹鹏, 郑袁明. 代谢异速生长理论及其在微生物生态学领域的应用[J]. 生态学报,2013,33(9):2645–2655. DOI: 10.5846/stxb201202080164.He JZ, Cao P, Zheng YM. Metabolic scaling theory and its application in microbial ecology[J]. Acta Ecol Sin, 2013, 33(9): 2645–2655. DOI: 10.5846/stxb201202080164. [11] 陈盟, 祁建城, 杜耀华, 等. 活/死菌检测方法的研究进展[J]. 军事医学,2018,42(9):715–720. DOI:10.7644/j.issn.1674− 9960.2018.09.015.Chen M, Qi JC, Du YH, et al. Research progress in methods for live/dead detection of bacteria[J]. Mil Med Sci, 2018, 42(9): 715–720. DOI: 10.7644/j.issn.1674−9960.2018.09.015. [12] 李凡, 韩梅. 医学微生物学[M]. 北京: 高等教育出版社, 2014.Li F, Han M. Medical microbiology[M]. Beijing: Higher Education Press, 2014. [13] Nocker A, Cheung CY, Camper AK. Comparison of propidium monoazide with ethidium monoazide for differentiation of live vs. dead bacteria by selective removal of DNA from dead cells[J]. J Microbiol Methods, 2006, 67(2): 310–320. DOI: 10.1016/j.mimet.2006.04.015. [14] 於颖. PMA-qPCR定量检测畜禽肉类中食源性致病菌活菌的研究[D]. 上海: 东华大学, 2015.Yu Y. Development of a quantitative method to detect viable Salmonella and Staphylococcus aureus by PMA-qPCR in livestock and poultry meat[D]. Shanghai: Donghua University, 2015. [15] Chen J, Tang J, Liu J, et al. Development and evaluation of a multiplex PCR for simultaneous detection of five foodborne pathogens[J]. J Appl Microbiol, 2012, 112(4): 823–830. DOI: 10.1111/j.1365−2672.2012.05240.x. [16] Josephson KL, Gerba CP, Pepper IL. Polymerase chain reaction detection of nonviable bacterial pathogens[J]. Appl Environ Microbiol, 1993, 59(10): 3513–3515. DOI: 10.1128/aem.59.10.3513−3515.1993. [17] Coutard F, Pommepuy M, Loaec S, et al. mRNA detection by reverse transcription-PCR for monitoring viability and potential virulence in a pathogenic strain of Vibrio parahaemolyticus in viable but nonculturable state[J]. J Appl Microbiol, 2005, 98(4): 951–961. DOI: 10.1111/j.1365−2672.2005.02534.x. [18] D'Aoust JY, Sewell AM, Warburton DW. A comparison of standard cultural methods for the detection of foodborne Salmonella[J]. Int J Food Microbiol, 1992, 16(1): 41–50. DOI: 10.1016/0168−1605(92)90124−L. [19] 周平. 基于PMA-qPCR快速定量检测牛奶中常见食源性致病菌活菌的研究[D]. 南昌: 南昌大学, 2019. DOI: 10.27232/d.cnki.gnchu.2019.002331.Zhou P. Research on rapid and quantitative detection of viable common foodborne pathogens in milk by PMA-qPCR[D]. Nanchang: Nanchang University, 2019. DOI: 10.27232/d.cnki.gnchu.2019.002331. [20] Park S, Shukla S, Kim Y, et al. Development of sandwich enzyme-linked immunosorbent assay for the detection of Cronobacter muytjensii (formerly called Enterobacter sakazakii)[J]. Microbiol Immunol, 2012, 56(7): 472–479. DOI: 10.1111/j.1348−0421.2012.00466.x. [21] 陆烨, 胡国庆, 陆龙喜, 等. ATP生物荧光技术快速测定细菌总数的应用研究[J]. 中国消毒学杂志,2013,30(7):613–615,618.Lu Y, Hu GQ, Lu LX, et al. Research on feasibility of ATP bioluminescence determination of the total number of bacteria[J]. Chin J Disinfect, 2013, 30(7): 613–615,618. [22] 易琳. 微生物检测中ATP生物发光法的应用研究现状[J]. 生物化工,2019,5(1):124–126. DOI:10.3969/j.issn.2096−0387.2019.01.036.Yi L. Application of ATP bioluminescence in microbial detection[J]. Biol Chem Eng, 2019, 5(1): 124–126. DOI: 10.3969/j.issn.2096−0387.2019.01.036. [23] 田雨, 侯玉柱, 柯润辉, 等. 采用ATP生物发光法分析6株常见细菌ATP含量差异[J]. 食品与发酵工业,2015,41(1):220–224. DOI:10.13995/j.cnki.11−1802/ts.201501042.Tian Y, Hou YZ, Ke RH, et al. Study on ATP content difference of six common strains by ATP bioluminescence method[J]. Food Ferment Ind, 2015, 41(1): 220–224. DOI: 10.13995/j.cnki.11− 1802/ts.201501042. [24] 张尧, 邸金茹, 邓旭峰, 等. ATP荧光检测法快速筛查冷荤间加工现场凉拌菜的细菌污染状况[J]. 中国食品卫生杂志,2014,26(4):377–379. DOI: 10.13590/j.cjfh.2014.04.018.Zhang Y, Di JR, Deng XF, et al. Application of the ATP bioluminescence assay to screen bacterial contamination of cold dish[J]. Chin J Food Hyg, 2014, 26(4): 377–379. DOI: 10.13590/j.cjfh.2014.04.018. [25] Puig-Collderram B, Domene-Ochoa S, Salvà-Comas M, et al. ATP Bioluminescence assay to evaluate antibiotic combinations against extensively drug-resistant (XDR) Pseudomonas aeruginosa[J]. Microbiol Spectr, 2022, 10(4): e0065122. DOI: 10.1128/spectrum.00651−22. [26] 郭立芸, 向杰, 谢鑫, 等. 腺嘌呤核苷三磷酸生物发光法快速检测短乳杆菌[J]. 食品与发酵工业,2020,46(18):232–235. DOI:10.13995/j.cnki.11−1802/ts.024135.Guo LY, Xiang J, Xie X, et al. Rapid detection of Lactobacillus brevis in beer with ATP bioluminescence[J]. Food Ferment Ind, 2020, 46(18): 232–235. DOI: 10.13995/j.cnki.11−1802/ts.024135. [27] 赵新华, 吴卿. 利用CTC技术测定水环境中的细菌活性[J]. 中国给水排水,2003,19(8):97–99. DOI:10.3321/j.issn:1000− 4602.2003.08.036.Zhao XH, Wu Q. Utilization of CTC for detecting bacterial activity in water environment[J]. China Water Wastewater, 2003, 19(8): 97–99. DOI: 10.3321/j.issn:1000−4602.2003.08.036. [28] 张紫莺. 刃天青在食源大肠杆菌活体中的电化学特性研究[D]. 长沙: 中南林业科技大学, 2018. DOI: 10.7666/d.Y3430454.Zhang ZY. Study on electrochemical characteristics of resazurin in the living organisms of food-borne Escherichia coli[D]. Changsha: Central South University of Forestry and Technology, 2018. DOI: 10.7666/d.Y3430454. [29] Zhang HX, Du GH, Zhang JT. Assay of mitochondrial functions by resazurin in vitro[J]. Acta Pharmacol Sin, 2004, 25(3): 385–389. [30] 艾玉琴, 王作洲, 张丽萍, 等. 刃天青快速检验乳粉中总菌数的研究[J]. 黑龙江八一农垦大学学报,1993,7(2):96–99Ai YQ, Wang ZZ, Zhang LP, et al. Study on rapid determination of total bacterial count in milk powder by Jian Tianqing[J]. J Heilongjiang August First Land Reclamatiou Univ, 1993, 7(2): 96–99 [31] 王甜, 陈庆富. 荧光定量PCR技术研究进展及其在植物遗传育种中的应用[J]. 种子,2007,26(2):56–61. DOI:10.16590/j.cnki.1001−4705.2007.02.052.Wang T, Chen QF. The progress of fluorescence qPCR and its application in plant genetics and breeding[J]. Seed, 2007, 26(2): 56–61. DOI: 10.16590/j.cnki.1001−4705.2007.02.052. [32] 陶怡君, 谌志筠, 何秋水. 叠氮溴化丙锭结合qPCR检测与区分活菌和死菌的研究进展[J]. 微生物学免疫学进展,2020,48(6):63–68. DOI: 10.13309/j.cnki.pmi.2020.06.012.Tao YJ, Chen ZJ, He QS. Advances in detection and differentiation of live and dead bacteria by PMA-qPCR technology[J]. Prog Immunol Microbiol, 2020, 48(6): 63–68. DOI: 10.13309/j.cnki.pmi.2020.06.012. [33] Reichelt B, Szott V, Stingl K, et al. Detection of viable but non-culturable (VBNC)- Campylobacter in the environment of broiler farms: innovative insights delivered by propidium monoazide (PMA)-v-qPCR analysis[J]. Microorganisms, 2023, 11(10): 2492. DOI: 10.3390/microorganisms11102492. [34] Guo JC, Fan F, Wang WL, et al. Development of PMA-qPCR assay to accurately and reproducible quantify viable bacteria of Paenibacillus polymyxa[J]. Lett Appl Microbiol, 2023, 76(11): ovad127. DOI: 10.1093/lambio/ovad127. [35] Yang JS, Xu HB, Ke ZL, et al. Absolute quantification of viable Vibrio cholerae in seawater samples using multiplex droplet digital PCR combined with propidium monoazide[J]. Front Microbiol, 2023, 14: 1149981. DOI: 10.3389/fmicb.2023.1149981. [36] Golpayegani A, Douraghi M, Rezaei F, et al. Propidium monoazide-quantitative polymerase chain reaction (PMA-qPCR) assay for rapid detection of viable and viable but non-culturable (VBNC) Pseudomonas aeruginosa in swimming pools[J]. J Environ Health Sci Eng, 2019, 17(1): 407–416. DOI: 10.1007/s40201−019−00359−w. [37] Boyle AG, O’Shea K, Stefanovski D, et al. Detection of viable Streptococcus equi equi using propidium monoazide polymerase chain reaction[J]. J Equine Vet Sci, 2023, 128: 104893. DOI: 10.1016/j.jevs.2023.104893. [38] Dong L, Liu HM, Meng L, et al. Quantitative PCR coupled with sodium dodecyl sulfate and propidium monoazide for detection of viable Staphylococcus aureus in milk[J]. J Dairy Sci, 2018, 101(6): 4936–4943. DOI: 10.3168/jds.2017−14087. [39] Pacholewicz E, Swart A, Lipman LJA, et al. Propidium monoazide does not fully inhibit the detection of dead Campylobacter on broiler chicken carcasses by qPCR[J]. J Microbiol Methods, 2013, 95(1): 32–38. DOI: 10.1016/j.mimet.2013.06.003. [40] Codony F, Agustí G, Allué-Guardia A. Cell membrane integrity and distinguishing between metabolically active and inactive cells as a means of improving viability PCR[J]. Mol Cell Probes, 2015, 29(3): 190–192. DOI: 10.1016/j.mcp.2015.03.003. [41] 凌南. 副溶血弧菌SD-PMA-qPCR活菌检测方法的建立及应用[D]. 南京: 南京农业大学, 2019. DOI: 10.27244/d.cnki.gnjnu.2019.001739.Ling N. Establishment and application of SD-PMA-qPCR detection method for Vibrio paraholyticus[D]. Nanjing: Nanjing Agricultural University, 2019. DOI: 10.27244/d.cnki.gnjnu.2019.001739. [42] 李善志, 吴清平, 张菊梅, 等. RT-PCR方法检测单核细胞增生李斯特活菌研究[J]. 中国卫生检验杂志,2006,16(6):641–643.Li SZ, Wu QP, Zhang JM, et al. Detection of viable Listeria monocytogenes with RT-PCR assay[J]. Chin J Health Lab Technol, 2006, 16(6): 641–643. [43] 张冲, 刘祥, 陈计峦. 实时荧光定量RT-PCR检测沙门氏菌活菌[J]. 食品工业科技,2012,33(6):91–94. DOI:10.13386/j.issn1002−0306.2012.06.026.Zhang C, Liu X, Chen JL. Real-time quantitative reverse transcription polymerase chain reaction detection of live Salmonella[J]. Sci Technol Food Ind, 2012, 33(6): 91–94. DOI: 10.13386/j.issn1002−0306.2012.06.026. [44] 王云华, 罗诗龙, 伍朝晖, 等. 实时荧光RT-PCR方法检测水及水产品中霍乱弧菌[J]. 中国国境卫生检疫杂志, 2006, 29(5): 311−313. DOI: 10.3969/j.issn.1004-9770.2006.05.017.Wang YH, Luo SL, Wu ZH, et al. Research on detecting Vibrio cholerae in water sample and marine product by real-time fluorescence quantitative RT-PCR[J]. Chin J Front Health Quar, 2006, 29(5): 311−313. DOI: 10.3969/j.issn.1004-9770.2006.05.017. [45] 赵泓, 刘凡. 流式细胞仪[J]. 安徽农学通报,2006,12(12):39–41,80. DOI:10.3969/j.issn.1007−7731.2006.12.017.Zhao H, Liu F. Flow cytometry[J]. Anhui Agric Sci Bull, 2006, 12(12): 39–41,80. DOI: 10.3969/j.issn.1007−7731.2006.12.017. [46] 孙福齐, 撒昱, 李奇峰, 等. 流式细胞分选仪研究进展与展望[J]. 中国医学物理学杂志,2023,40(7):890–898. DOI:10.3969/j.issn.1005−202X.2023.07.016.Sun FQ, Sa Y, Li QF, et al. Advances and prospect of flow cytometer[J]. Chin J Med Phys, 2023, 40(7): 890–898. DOI: 10.3969/j.issn.1005−202X.2023.07.016. [47] 林怡雯, 杨天, 李丹, 等. 基于CTC-流式细胞仪活性细菌总数的快速检测技术研究[J]. 环境科学学报,2013,33(9):2511–2515. DOI: 10.13671/j.hjkxxb.2013.09.007.Lin YW, Yang T, Li D, et al. Rapid detection of viable bacteria by integrated CTC (5-cyano-2, 3-ditoyl tetrazolium chloride) dying and flow cytometry assay (CTC-FCM)[J]. Acta Sci Circumstantiae, 2013, 33(9): 2511–2515. DOI: 10.13671/j.hjkxxb.2013.09.007. [48] Kennedy D, Cronin UP, Wilkinson MG. Responses of Escherichia coli , Listeria monocytogenes, and Staphylococcus aureus to simulated food processing treatments, determined using fluorescence-activated cell sorting and plate counting[J]. Appl Environ Microbiol, 2011, 77(13): 4657–4668. DOI: 10.1128/AEM. 00323−11. [49] Schiffman JD, Elimelech M. Antibacterial activity of electrospun polymer mats with incorporated narrow diameter single-walled carbon nanotubes[J]. ACS Appl Mater Interfaces, 2011, 3(2): 462–468. DOI: 10.1021/am101043y. [50] Asadishad B, Ghoshal S, Tufenkji N. Method for the direct observation and quantification of survival of bacteria attached to negatively or positively charged surfaces in an aqueous medium[J]. Environ Sci Technol, 2011, 45(19): 8345–8351. DOI: 10.1021/es201496q. [51] 刘晓露. 利用流式细胞仪对饮用水中细菌的快速检测[D]. 北京: 北京林业大学, 2014.Liu XL. A rapid detection method of microbes in drinking water by flow cytometry[D]. Beijing: Beijing Forestry University, 2014. [52] Wang M, Bai ZY, Liu SY, et al. Accurate quantification of total bacteria in raw milk by flow cytometry using membrane potential as a key viability parameter[J]. LWT, 2023, 173: 114315. DOI: 10.1016/j.lwt.2022.114315. [53] 王喜先, 孙晴, 刁志钿, 等. 拉曼光谱技术在单细胞表型检测与分选中的应用进展[J]. 合成生物学,2023,4(1):204–224.Wang XX, Sun Q, Diao ZD, et al. Advances with applications of Raman spectroscopy in single-cell phenotype sorting and analysis[J]. Synth Biol J, 2023, 4(1): 204–224. [54] 阮真, 朱鹏飞, 付晓婷, 等. 单细胞拉曼技术在病原微生物检测中的研究进展[J]. 微生物学通报,2021,48(4):1348–1359. DOI: 10.13344/j.microbiol.china.200703.Ruan Z, Zhu PF, Fu XT, et al. Detection of pathogenic microorganism by single-cell Raman spectroscopy: a review[J]. Microbiol China, 2021, 48(4): 1348–1359. DOI: 10.13344/j.microbiol.china.200703. [55] Yan J, Yu Y, Kang JW, et al. Development of a classification model for non-alcoholic steatohepatitis (NASH) using confocal Raman micro-spectroscopy[J]. J Biophotonics, 2017, 10(12): 1703–1713. DOI: 10.1002/jbio.201600303. [56] Huang WE, Griffiths RI, Thompson IP, et al. Raman microscopic analysis of single microbial cells[J]. Anal Chem, 2004, 76(15): 4452–4458. DOI: 10.1021/ac049753k. [57] 宋雨欣, 王东琦, 秦璐, 等. 单细胞拉曼光谱技术在环境和生物研究中的应用[C]./中国环境科学学会2022年科学技术年会论文集. 南昌: 中国环境科学学会, 2022: 735−739.Song YX, Wang DQ, Qin L, et al. Application of Single-cell Raman spectroscopy in Environmental and biological research[C]./Proceedings of the 2022 Annual Science and Technology Conference of the Chinese Society for Environmental Sciences. Nanchang: Chinese Society for Environmental Sciences, 2022: 735−739. [58] 王桢干, 周志慧. 拉曼光谱在微生物研究中的应用[J]. 世界最新医学信息文摘, 2019, 19(71): 151−152. DOI: 10.19613/j.cnki.1671-3141.2019.71.070.Wang ZG, Zhou ZH. Application of Raman spectroscopy in microbial studies[J]. World Latest Med Inf Dig, 2019, 19(71): 151−152. DOI: 10.19613/j.cnki.1671-3141.2019.71.070. [59] 阮真, 朱鹏飞, 张磊, 等. 基于单细胞拉曼技术鉴定非结核分枝杆菌的方法研究[J]. 光谱学与光谱分析,2021,41(11):3468–3473. DOI:10.3964/j.issn.1000−0593(2021)11−3468−06.Ruan Z, Zhu PF, Zhang L, et al. Study on identification of non-tuberculosis mycobacteria based on single-cell Raman spectroscopy[J]. Spectrosc Spectral Anal, 2021, 41(11): 3468–3473. DOI: 10.3964/j.issn.1000−0593(2021)11−3468−06. [60] 李备, 张来明, 李文杰. 单细胞拉曼分选技术在大肠杆菌分离中的应用[J]. 生物化工,2020,6(2):75–77. DOI:10.3969/j.issn.2096−0387.2020.02.021.Li B, Zhang LM, Li WJ. Application of single cell Raman sorting technique in separation of Escherichia coli[J]. Biol Chem Eng, 2020, 6(2): 75–77. DOI: 10.3969/j.issn.2096−0387.2020.02.021. [61] Zhang J, Ren LH, Zhang L, et al. Single-cell rapid identification, in situ viability and vitality profiling, and genome-based source-tracking for probiotics products[J]. iMeta, 2023, 2(3): e117. DOI: 10.1002/imt2.117. [62] Liu M, Zhu PF, Zhang L, et al. Single-cell identification, drug susceptibility test, and whole-genome sequencing of Helicobacter pylori directly from gastric biopsy by clinical antimicrobial susceptibility test ramanometry[J]. Clin Chem, 2022, 68(8): 1064–1074. DOI: 10.1093/clinchem/hvac082. [63] 中国科学院青岛生物能源与过程研究所. 基于单细胞拉曼技术的益生菌活菌测量方法及其试剂盒: 中国, 202111330295.5[P]. 2022−02−08.Qingdao Institute of Bioenergy and Process, Chinese Academy of Sciences. Measurement method and kit of probiotic viable bacteria based on single cell Raman technology: CN, 202111330295.5[P]. 2022−02−08. [64] 刘聪, 张传伦, 谢伟, 等. 一种单细胞拉曼光谱技术测定氨氧化古菌代谢活性的方法: 中国, 201910473050.4[P]. 2019−09−13.Liu C, Zhang CL, Xie W, et al. A method for the determination of metabolic activity of ammonia-oxidizing archaea by single-cell Raman spectroscopy: CN, 201910473050.4[P]. 2019−09−13. -
附表1 菌株信息及噬菌体预测结果.xlsx
附表2 完整前噬菌体及插入位点信息.xlsx
-

表(1)
计量
- 文章访问数: 2944
- HTML全文浏览量: 909
- PDF下载量: 712
- 被引次数: 0