细菌活性检测方法研究进展及其应用探讨

刘丽 魏强

刘丽, 魏强. 细菌活性检测方法研究进展及其应用探讨[J]. 疾病监测. doi: 10.3784/jbjc.2021.000
引用本文: 刘丽, 魏强. 细菌活性检测方法研究进展及其应用探讨[J]. 疾病监测. doi: 10.3784/jbjc.2021.000
Liu Li, Wei Qiang. Research progress and application of bacterial activity detection methods[J]. Disease Surveillance. doi: 10.3784/jbjc.2021.000
Citation: Liu Li, Wei Qiang. Research progress and application of bacterial activity detection methods[J]. Disease Surveillance. doi: 10.3784/jbjc.2021.000

细菌活性检测方法研究进展及其应用探讨

doi: 10.3784/jbjc.2021.000
基金项目: 国家重点研发计划 (2022YFC2602200)
详细信息
    作者简介:

    刘丽,女;山东省临沂市;研究生;病原微生物;Email:liuli12342022@163.com

    魏强,男;吉林省延吉市;研究员;病原微生物;Email:weiqiang@chinacdc.cn

    通讯作者:

    魏强,Tel:010−58900338, Email:weiqiang@chinacdc.cn

Research progress and application of bacterial activity detection methods

Funds: This study was supported by the National Key Research and Development Program of China (2022YFC2602200)
More Information
  • 摘要: 细菌活性检测是检验、评价和保藏的关键,快速、灵敏、特异和准确的细菌活性检测方法是十分重要的。目前,细菌活性可以根据细菌生长繁殖能力、新陈代谢能力、细胞膜的完整性以及复制转录能力原理进行检测。不同的检测原理会有不同的检测方法,平板培养计数法是最为经典的活性检测方法,PMA-qPCR、荧光染料结合流式细胞仪、单细胞拉曼分析技术等是新应用的方法。随着科学技术的不断发展和细菌活性检测的需求,优化的细菌活性检测方法层出不穷,但不同的细菌活性检测方法具有不同的优缺点。本文就目前细菌活性检测原理、方法、应用以及优缺点等方面进行描述,并探讨了细菌活性检测方法在细菌检验和保藏等方面的应用。
  • 表  1  细菌活性检测方法对比分析表

    Table  1.   Comparative analysis of bacterial activity detection methods

    原理方法优点不足

    生长繁殖能力
    平板培养计数法1.低成本
    2.可区分活菌和死菌
    3.无需样本富集
    1.所需时间较长(18-72h)
    2.无法检测VBNC细菌,易造成假阴性结果






    新陈代谢能力
    ATP生物发光法1.操作简单
    2.检测时间短(1-5分钟)
    1.提取ATP复杂
    2.ATP易降解

    氧化还原法
    1.操作简单
    1.受浓度、温度等多种因素影响
    2.指示剂有可能造成细胞毒性

    单细胞拉曼技术
    1.无需培养细菌
    2.无需标记细菌
    3.快速、高效、自动化(整个过程只需要5h)
    1.需建立数据库和专业分析软件
    2.在细菌活性检测领域应用较少


    RT-PCR
    1.灵敏度较高
    2.特异性较高
    3.自动化操作节省人力
    4.可区分活菌和死菌
    1.成本较高
    2.mRNA的半衰期短,且易被降解,
    可造成假阴性结果

    细胞膜的完整性和
    复制转录能力


    PMA-qPCR
    1.灵敏度较高
    2.特异性较高
    3.自动化操作节省人力
    4.可区分活菌和死菌
    1.无法完全去除死菌信号,可导致出现假阳性
    2.无法区分具有完整细胞膜和无代谢活性的死菌


    细胞膜的完整性


    流式细胞仪
    1.可计数VBNC细菌
    2.可区分活菌和死菌
    3.所需时间短 (每秒达上万个单细胞或颗粒)
    4.可提供详细细胞生理状态信息
    1.需荧光染料标记,可能损害细菌活性
    2.成本高
    3.依赖大型仪器
    4.需专业人员操作
    下载: 导出CSV
  • [1] GBD 2019 Antimicrobial Resistance Collaborators. Global mortality associated with 33 bacterial pathogens in 2019: a systematic analysis for the Global Burden of Disease Study 2019[J]. Lancet, 2022, 400(10369): 2221–2248. DOI: 10.1016/S0140−6736(22)02185−7.
    [2] Vikesland PJ, Wigginton KR. Nanomaterial enabled biosensors for pathogen monitoring - a review[J]. Environ Sci Technol, 2010, 44(10): 3656–3669. DOI:  10.1021/es903704z.
    [3] Jones KE, Patel NG, Levy MA, et al. Global trends in emerging infectious diseases[J]. Nature, 2008, 451(7181): 990–993. DOI:  10.1038/nature06536.
    [4] 王多春, 姜孟楠, 魏强. 病原微生物菌(毒)种国家标准株评价体系[J]. 中华实验和临床病毒学杂,2021,35(5):490–493. DOI:10.3760/cma.j.cn112866−20210714−00119.

    Wang DC, Jiang MN, Wei Q. Evaluation system of national standard strains of pathogenic microorganism[J]. Chin J Exp Clin Virol, 2021, 35(5): 490–493. DOI: 10.3760/cma.j.cn112866− 20210714−00119.
    [5] 邓颖. 基于流式细胞术的SYTO 9/PI细菌活性判定方法优化及其机理[D]. 广州: 暨南大学, 2020. DOI:  10.27167/d.cnki.gjinu.2020.001227.

    Deng Y. Optimization of bacterial cell viability assays with the fluorophores SYTO 9 and propidium iodide and its mechanism based on flow cytometry[D]. Guangzhou: Jinan University, 2020. DOI:  10.27167/d.cnki.gjinu.2020.001227.
    [6] Ramamurthy T, Ghosh A, Pazhani GP, et al. Current perspectives on viable but non-culturable (VBNC) pathogenic bacteria[J]. Front Public Health, 2014, 2: 103. DOI:  10.3389/fpubh.2014.00103.
    [7] Davis C. Enumeration of probiotic strains: review of culture-dependent and alternative techniques to quantify viable bacteria[J]. J Microbiol Methods, 2014, 103: 9–17. DOI:  10.1016/j.mimet.2014.04.012.
    [8] Oliver JD. The viable but nonculturable state in bacteria[J]. J Microbiol, 2005, 43 Spec No: 93−100.
    [9] 曾尼卡有限公司. 活细菌: 中国, 94191905.6[P]. 1996−05−01.

    Zenica LTD. Live bacteria: CN, 94191905. 6[P]. 1996−05−01.
    [10] 贺纪正, 曹鹏, 郑袁明. 代谢异速生长理论及其在微生物生态学领域的应用[J]. 生态学报,2013,33(9):2645–2655. DOI: 10.5846/stxb201202080164.

    He JZ, Cao P, Zheng YM. Metabolic scaling theory and its application in microbial ecology[J]. Acta Ecol Sin, 2013, 33(9): 2645–2655. DOI:  10.5846/stxb201202080164.
    [11] 陈盟, 祁建城, 杜耀华, 等. 活/死菌检测方法的研究进展[J]. 军事医学,2018,42(9):715–720. DOI:10.7644/j.issn.1674− 9960.2018.09.015.

    Chen M, Qi JC, Du YH, et al. Research progress in methods for live/dead detection of bacteria[J]. Mil Med Sci, 2018, 42(9): 715–720. DOI: 10.7644/j.issn.1674−9960.2018.09.015.
    [12] 李凡, 韩梅. 医学微生物学[M]. 北京: 高等教育出版社, 2014.

    Li F, Han M. Medical microbiology[M]. Beijing: Higher Education Press, 2014.
    [13] Nocker A, Cheung CY, Camper AK. Comparison of propidium monoazide with ethidium monoazide for differentiation of live vs. dead bacteria by selective removal of DNA from dead cells[J]. J Microbiol Methods, 2006, 67(2): 310–320. DOI:  10.1016/j.mimet.2006.04.015.
    [14] 於颖. PMA-qPCR定量检测畜禽肉类中食源性致病菌活菌的研究[D]. 上海: 东华大学, 2015.

    Yu Y. Development of a quantitative method to detect viable Salmonella and Staphylococcus aureus by PMA-qPCR in livestock and poultry meat[D]. Shanghai: Donghua University, 2015.
    [15] Chen J, Tang J, Liu J, et al. Development and evaluation of a multiplex PCR for simultaneous detection of five foodborne pathogens[J]. J Appl Microbiol, 2012, 112(4): 823–830. DOI: 10.1111/j.1365−2672.2012.05240.x.
    [16] Josephson KL, Gerba CP, Pepper IL. Polymerase chain reaction detection of nonviable bacterial pathogens[J]. Appl Environ Microbiol, 1993, 59(10): 3513–3515. DOI: 10.1128/aem.59.10.3513−3515.1993.
    [17] Coutard F, Pommepuy M, Loaec S, et al. mRNA detection by reverse transcription-PCR for monitoring viability and potential virulence in a pathogenic strain of Vibrio parahaemolyticus in viable but nonculturable state[J]. J Appl Microbiol, 2005, 98(4): 951–961. DOI: 10.1111/j.1365−2672.2005.02534.x.
    [18] D'Aoust JY, Sewell AM, Warburton DW. A comparison of standard cultural methods for the detection of foodborne Salmonella[J]. Int J Food Microbiol, 1992, 16(1): 41–50. DOI: 10.1016/0168−1605(92)90124−L.
    [19] 周平. 基于PMA-qPCR快速定量检测牛奶中常见食源性致病菌活菌的研究[D]. 南昌: 南昌大学, 2019. DOI:  10.27232/d.cnki.gnchu.2019.002331.

    Zhou P. Research on rapid and quantitative detection of viable common foodborne pathogens in milk by PMA-qPCR[D]. Nanchang: Nanchang University, 2019. DOI:  10.27232/d.cnki.gnchu.2019.002331.
    [20] Park S, Shukla S, Kim Y, et al. Development of sandwich enzyme-linked immunosorbent assay for the detection of Cronobacter muytjensii (formerly called Enterobacter sakazakii)[J]. Microbiol Immunol, 2012, 56(7): 472–479. DOI: 10.1111/j.1348−0421.2012.00466.x.
    [21] 陆烨, 胡国庆, 陆龙喜, 等. ATP生物荧光技术快速测定细菌总数的应用研究[J]. 中国消毒学杂志,2013,30(7):613–615,618.

    Lu Y, Hu GQ, Lu LX, et al. Research on feasibility of ATP bioluminescence determination of the total number of bacteria[J]. Chin J Disinfect, 2013, 30(7): 613–615,618.
    [22] 易琳. 微生物检测中ATP生物发光法的应用研究现状[J]. 生物化工,2019,5(1):124–126. DOI:10.3969/j.issn.2096−0387.2019.01.036.

    Yi L. Application of ATP bioluminescence in microbial detection[J]. Biol Chem Eng, 2019, 5(1): 124–126. DOI: 10.3969/j.issn.2096−0387.2019.01.036.
    [23] 田雨, 侯玉柱, 柯润辉, 等. 采用ATP生物发光法分析6株常见细菌ATP含量差异[J]. 食品与发酵工业,2015,41(1):220–224. DOI:10.13995/j.cnki.11−1802/ts.201501042.

    Tian Y, Hou YZ, Ke RH, et al. Study on ATP content difference of six common strains by ATP bioluminescence method[J]. Food Ferment Ind, 2015, 41(1): 220–224. DOI: 10.13995/j.cnki.11− 1802/ts.201501042.
    [24] 张尧, 邸金茹, 邓旭峰, 等. ATP荧光检测法快速筛查冷荤间加工现场凉拌菜的细菌污染状况[J]. 中国食品卫生杂志,2014,26(4):377–379. DOI: 10.13590/j.cjfh.2014.04.018.

    Zhang Y, Di JR, Deng XF, et al. Application of the ATP bioluminescence assay to screen bacterial contamination of cold dish[J]. Chin J Food Hyg, 2014, 26(4): 377–379. DOI:  10.13590/j.cjfh.2014.04.018.
    [25] Puig-Collderram B, Domene-Ochoa S, Salvà-Comas M, et al. ATP Bioluminescence assay to evaluate antibiotic combinations against extensively drug-resistant (XDR) Pseudomonas aeruginosa[J]. Microbiol Spectr, 2022, 10(4): e0065122. DOI: 10.1128/spectrum.00651−22.
    [26] 郭立芸, 向杰, 谢鑫, 等. 腺嘌呤核苷三磷酸生物发光法快速检测短乳杆菌[J]. 食品与发酵工业,2020,46(18):232–235. DOI:10.13995/j.cnki.11−1802/ts.024135.

    Guo LY, Xiang J, Xie X, et al. Rapid detection of Lactobacillus brevis in beer with ATP bioluminescence[J]. Food Ferment Ind, 2020, 46(18): 232–235. DOI: 10.13995/j.cnki.11−1802/ts.024135.
    [27] 赵新华, 吴卿. 利用CTC技术测定水环境中的细菌活性[J]. 中国给水排水,2003,19(8):97–99. DOI:10.3321/j.issn:1000− 4602.2003.08.036.

    Zhao XH, Wu Q. Utilization of CTC for detecting bacterial activity in water environment[J]. China Water Wastewater, 2003, 19(8): 97–99. DOI: 10.3321/j.issn:1000−4602.2003.08.036.
    [28] 张紫莺. 刃天青在食源大肠杆菌活体中的电化学特性研究[D]. 长沙: 中南林业科技大学, 2018. DOI:  10.7666/d.Y3430454.

    Zhang ZY. Study on electrochemical characteristics of resazurin in the living organisms of food-borne Escherichia coli[D]. Changsha: Central South University of Forestry and Technology, 2018. DOI:  10.7666/d.Y3430454.
    [29] Zhang HX, Du GH, Zhang JT. Assay of mitochondrial functions by resazurin in vitro[J]. Acta Pharmacol Sin, 2004, 25(3): 385–389.
    [30] 艾玉琴, 王作洲, 张丽萍, 等. 刃天青快速检验乳粉中总菌数的研究[J]. 黑龙江八一农垦大学学报,1993,7(2):96–99

    Ai YQ, Wang ZZ, Zhang LP, et al. Study on rapid determination of total bacterial count in milk powder by Jian Tianqing[J]. J Heilongjiang August First Land Reclamatiou Univ, 1993, 7(2): 96–99
    [31] 王甜, 陈庆富. 荧光定量PCR技术研究进展及其在植物遗传育种中的应用[J]. 种子,2007,26(2):56–61. DOI:10.16590/j.cnki.1001−4705.2007.02.052.

    Wang T, Chen QF. The progress of fluorescence qPCR and its application in plant genetics and breeding[J]. Seed, 2007, 26(2): 56–61. DOI: 10.16590/j.cnki.1001−4705.2007.02.052.
    [32] 陶怡君, 谌志筠, 何秋水. 叠氮溴化丙锭结合qPCR检测与区分活菌和死菌的研究进展[J]. 微生物学免疫学进展,2020,48(6):63–68. DOI: 10.13309/j.cnki.pmi.2020.06.012.

    Tao YJ, Chen ZJ, He QS. Advances in detection and differentiation of live and dead bacteria by PMA-qPCR technology[J]. Prog Immunol Microbiol, 2020, 48(6): 63–68. DOI:  10.13309/j.cnki.pmi.2020.06.012.
    [33] Reichelt B, Szott V, Stingl K, et al. Detection of viable but non-culturable (VBNC)- Campylobacter in the environment of broiler farms: innovative insights delivered by propidium monoazide (PMA)-v-qPCR analysis[J]. Microorganisms, 2023, 11(10): 2492. DOI:  10.3390/microorganisms11102492.
    [34] Guo JC, Fan F, Wang WL, et al. Development of PMA-qPCR assay to accurately and reproducible quantify viable bacteria of Paenibacillus polymyxa[J]. Lett Appl Microbiol, 2023, 76(11): ovad127. DOI:  10.1093/lambio/ovad127.
    [35] Yang JS, Xu HB, Ke ZL, et al. Absolute quantification of viable Vibrio cholerae in seawater samples using multiplex droplet digital PCR combined with propidium monoazide[J]. Front Microbiol, 2023, 14: 1149981. DOI:  10.3389/fmicb.2023.1149981.
    [36] Golpayegani A, Douraghi M, Rezaei F, et al. Propidium monoazide-quantitative polymerase chain reaction (PMA-qPCR) assay for rapid detection of viable and viable but non-culturable (VBNC) Pseudomonas aeruginosa in swimming pools[J]. J Environ Health Sci Eng, 2019, 17(1): 407–416. DOI: 10.1007/s40201−019−00359−w.
    [37] Boyle AG, O’Shea K, Stefanovski D, et al. Detection of viable Streptococcus equi equi using propidium monoazide polymerase chain reaction[J]. J Equine Vet Sci, 2023, 128: 104893. DOI:  10.1016/j.jevs.2023.104893.
    [38] Dong L, Liu HM, Meng L, et al. Quantitative PCR coupled with sodium dodecyl sulfate and propidium monoazide for detection of viable Staphylococcus aureus in milk[J]. J Dairy Sci, 2018, 101(6): 4936–4943. DOI: 10.3168/jds.2017−14087.
    [39] Pacholewicz E, Swart A, Lipman LJA, et al. Propidium monoazide does not fully inhibit the detection of dead Campylobacter on broiler chicken carcasses by qPCR[J]. J Microbiol Methods, 2013, 95(1): 32–38. DOI:  10.1016/j.mimet.2013.06.003.
    [40] Codony F, Agustí G, Allué-Guardia A. Cell membrane integrity and distinguishing between metabolically active and inactive cells as a means of improving viability PCR[J]. Mol Cell Probes, 2015, 29(3): 190–192. DOI:  10.1016/j.mcp.2015.03.003.
    [41] 凌南. 副溶血弧菌SD-PMA-qPCR活菌检测方法的建立及应用[D]. 南京: 南京农业大学, 2019. DOI:  10.27244/d.cnki.gnjnu.2019.001739.

    Ling N. Establishment and application of SD-PMA-qPCR detection method for Vibrio paraholyticus[D]. Nanjing: Nanjing Agricultural University, 2019. DOI:  10.27244/d.cnki.gnjnu.2019.001739.
    [42] 李善志, 吴清平, 张菊梅, 等. RT-PCR方法检测单核细胞增生李斯特活菌研究[J]. 中国卫生检验杂志,2006,16(6):641–643.

    Li SZ, Wu QP, Zhang JM, et al. Detection of viable Listeria monocytogenes with RT-PCR assay[J]. Chin J Health Lab Technol, 2006, 16(6): 641–643.
    [43] 张冲, 刘祥, 陈计峦. 实时荧光定量RT-PCR检测沙门氏菌活菌[J]. 食品工业科技,2012,33(6):91–94. DOI:10.13386/j.issn1002−0306.2012.06.026.

    Zhang C, Liu X, Chen JL. Real-time quantitative reverse transcription polymerase chain reaction detection of live Salmonella[J]. Sci Technol Food Ind, 2012, 33(6): 91–94. DOI: 10.13386/j.issn1002−0306.2012.06.026.
    [44] 王云华, 罗诗龙, 伍朝晖, 等. 实时荧光RT-PCR方法检测水及水产品中霍乱弧菌[J]. 中国国境卫生检疫杂志, 2006, 29(5): 311−313. DOI:  10.3969/j.issn.1004-9770.2006.05.017.

    Wang YH, Luo SL, Wu ZH, et al. Research on detecting Vibrio cholerae in water sample and marine product by real-time fluorescence quantitative RT-PCR[J]. Chin J Front Health Quar, 2006, 29(5): 311−313. DOI:  10.3969/j.issn.1004-9770.2006.05.017.
    [45] 赵泓, 刘凡. 流式细胞仪[J]. 安徽农学通报,2006,12(12):39–41,80. DOI:10.3969/j.issn.1007−7731.2006.12.017.

    Zhao H, Liu F. Flow cytometry[J]. Anhui Agric Sci Bull, 2006, 12(12): 39–41,80. DOI: 10.3969/j.issn.1007−7731.2006.12.017.
    [46] 孙福齐, 撒昱, 李奇峰, 等. 流式细胞分选仪研究进展与展望[J]. 中国医学物理学杂志,2023,40(7):890–898. DOI:10.3969/j.issn.1005−202X.2023.07.016.

    Sun FQ, Sa Y, Li QF, et al. Advances and prospect of flow cytometer[J]. Chin J Med Phys, 2023, 40(7): 890–898. DOI: 10.3969/j.issn.1005−202X.2023.07.016.
    [47] 林怡雯, 杨天, 李丹, 等. 基于CTC-流式细胞仪活性细菌总数的快速检测技术研究[J]. 环境科学学报,2013,33(9):2511–2515. DOI: 10.13671/j.hjkxxb.2013.09.007.

    Lin YW, Yang T, Li D, et al. Rapid detection of viable bacteria by integrated CTC (5-cyano-2, 3-ditoyl tetrazolium chloride) dying and flow cytometry assay (CTC-FCM)[J]. Acta Sci Circumstantiae, 2013, 33(9): 2511–2515. DOI:  10.13671/j.hjkxxb.2013.09.007.
    [48] Kennedy D, Cronin UP, Wilkinson MG. Responses of Escherichia coli , Listeria monocytogenes, and Staphylococcus aureus to simulated food processing treatments, determined using fluorescence-activated cell sorting and plate counting[J]. Appl Environ Microbiol, 2011, 77(13): 4657–4668. DOI: 10.1128/AEM. 00323−11.
    [49] Schiffman JD, Elimelech M. Antibacterial activity of electrospun polymer mats with incorporated narrow diameter single-walled carbon nanotubes[J]. ACS Appl Mater Interfaces, 2011, 3(2): 462–468. DOI:  10.1021/am101043y.
    [50] Asadishad B, Ghoshal S, Tufenkji N. Method for the direct observation and quantification of survival of bacteria attached to negatively or positively charged surfaces in an aqueous medium[J]. Environ Sci Technol, 2011, 45(19): 8345–8351. DOI:  10.1021/es201496q.
    [51] 刘晓露. 利用流式细胞仪对饮用水中细菌的快速检测[D]. 北京: 北京林业大学, 2014.

    Liu XL. A rapid detection method of microbes in drinking water by flow cytometry[D]. Beijing: Beijing Forestry University, 2014.
    [52] Wang M, Bai ZY, Liu SY, et al. Accurate quantification of total bacteria in raw milk by flow cytometry using membrane potential as a key viability parameter[J]. LWT, 2023, 173: 114315. DOI:  10.1016/j.lwt.2022.114315.
    [53] 王喜先, 孙晴, 刁志钿, 等. 拉曼光谱技术在单细胞表型检测与分选中的应用进展[J]. 合成生物学,2023,4(1):204–224.

    Wang XX, Sun Q, Diao ZD, et al. Advances with applications of Raman spectroscopy in single-cell phenotype sorting and analysis[J]. Synth Biol J, 2023, 4(1): 204–224.
    [54] 阮真, 朱鹏飞, 付晓婷, 等. 单细胞拉曼技术在病原微生物检测中的研究进展[J]. 微生物学通报,2021,48(4):1348–1359. DOI: 10.13344/j.microbiol.china.200703.

    Ruan Z, Zhu PF, Fu XT, et al. Detection of pathogenic microorganism by single-cell Raman spectroscopy: a review[J]. Microbiol China, 2021, 48(4): 1348–1359. DOI:  10.13344/j.microbiol.china.200703.
    [55] Yan J, Yu Y, Kang JW, et al. Development of a classification model for non-alcoholic steatohepatitis (NASH) using confocal Raman micro-spectroscopy[J]. J Biophotonics, 2017, 10(12): 1703–1713. DOI:  10.1002/jbio.201600303.
    [56] Huang WE, Griffiths RI, Thompson IP, et al. Raman microscopic analysis of single microbial cells[J]. Anal Chem, 2004, 76(15): 4452–4458. DOI:  10.1021/ac049753k.
    [57] 宋雨欣, 王东琦, 秦璐, 等. 单细胞拉曼光谱技术在环境和生物研究中的应用[C]./中国环境科学学会2022年科学技术年会论文集. 南昌: 中国环境科学学会, 2022: 735−739.

    Song YX, Wang DQ, Qin L, et al. Application of Single-cell Raman spectroscopy in Environmental and biological research[C]./Proceedings of the 2022 Annual Science and Technology Conference of the Chinese Society for Environmental Sciences. Nanchang: Chinese Society for Environmental Sciences, 2022: 735−739.
    [58] 王桢干, 周志慧. 拉曼光谱在微生物研究中的应用[J]. 世界最新医学信息文摘, 2019, 19(71): 151−152. DOI:  10.19613/j.cnki.1671-3141.2019.71.070.

    Wang ZG, Zhou ZH. Application of Raman spectroscopy in microbial studies[J]. World Latest Med Inf Dig, 2019, 19(71): 151−152. DOI:  10.19613/j.cnki.1671-3141.2019.71.070.
    [59] 阮真, 朱鹏飞, 张磊, 等. 基于单细胞拉曼技术鉴定非结核分枝杆菌的方法研究[J]. 光谱学与光谱分析,2021,41(11):3468–3473. DOI:10.3964/j.issn.1000−0593(2021)11−3468−06.

    Ruan Z, Zhu PF, Zhang L, et al. Study on identification of non-tuberculosis mycobacteria based on single-cell Raman spectroscopy[J]. Spectrosc Spectral Anal, 2021, 41(11): 3468–3473. DOI: 10.3964/j.issn.1000−0593(2021)11−3468−06.
    [60] 李备, 张来明, 李文杰. 单细胞拉曼分选技术在大肠杆菌分离中的应用[J]. 生物化工,2020,6(2):75–77. DOI:10.3969/j.issn.2096−0387.2020.02.021.

    Li B, Zhang LM, Li WJ. Application of single cell Raman sorting technique in separation of Escherichia coli[J]. Biol Chem Eng, 2020, 6(2): 75–77. DOI: 10.3969/j.issn.2096−0387.2020.02.021.
    [61] Zhang J, Ren LH, Zhang L, et al. Single-cell rapid identification, in situ viability and vitality profiling, and genome-based source-tracking for probiotics products[J]. iMeta, 2023, 2(3): e117. DOI:  10.1002/imt2.117.
    [62] Liu M, Zhu PF, Zhang L, et al. Single-cell identification, drug susceptibility test, and whole-genome sequencing of Helicobacter pylori directly from gastric biopsy by clinical antimicrobial susceptibility test ramanometry[J]. Clin Chem, 2022, 68(8): 1064–1074. DOI:  10.1093/clinchem/hvac082.
    [63] 中国科学院青岛生物能源与过程研究所. 基于单细胞拉曼技术的益生菌活菌测量方法及其试剂盒: 中国, 202111330295.5[P]. 2022−02−08.

    Qingdao Institute of Bioenergy and Process, Chinese Academy of Sciences. Measurement method and kit of probiotic viable bacteria based on single cell Raman technology: CN, 202111330295.5[P]. 2022−02−08.
    [64] 刘聪, 张传伦, 谢伟, 等. 一种单细胞拉曼光谱技术测定氨氧化古菌代谢活性的方法: 中国, 201910473050.4[P]. 2019−09−13.

    Liu C, Zhang CL, Xie W, et al. A method for the determination of metabolic activity of ammonia-oxidizing archaea by single-cell Raman spectroscopy: CN, 201910473050.4[P]. 2019−09−13.
  • 附表1 菌株信息及噬菌体预测结果.xlsx
    附表2 完整前噬菌体及插入位点信息.xlsx
  • 加载中
计量
  • 文章访问数:  2944
  • HTML全文浏览量:  909
  • PDF下载量:  712
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-22
  • 网络出版日期:  2023-11-30

目录

    /

    返回文章
    返回

    在线交流

    防诈骗公告

    大家好:近期有不法分子以本刊编辑身份添加作者微信,请务必提高警惕!本刊关于稿件的一切事项通知均采用编辑部唯一邮箱(jbjc@icdc.cn)和座机(010-58900732)联系作者,且在录用稿件后仅收取版面费,无其他任何名目费用(如审稿费和加急费等),非编辑部邮箱发送的本刊收费用通知等均为诈骗,不要随意汇入款项!如有可疑及时致电编辑部核实确认!