Analysis on antibiotic resistance and staphylococcal chromosome cassette mec of 166 strains of Staphylococcus epidermidis isolating from early pregnancy cervical swabs
-
摘要:
目的 了解2015-2017年从北京市朝阳区早孕宫颈拭子中分离的166株表皮葡萄球菌耐药性与耐药基因携带情况以及葡萄球菌染色体mec盒(SCCmec)型别,为合理用药及预防感染提供依据。 方法 回顾性分析2015-2017年从北京市朝阳区早孕宫颈拭子中分离的166株表皮葡萄球菌耐药情况,分别采用K-B法对头孢西丁,微量肉汤稀释法对其他11种抗菌药物进行药敏试验,采用聚合酶链式反应(PCR)对红霉素类、喹诺酮类、磺胺类、氨基糖苷类、大环内酯类、四环素类耐药基因和SCCmec的基因型和亚型进行检测,使用SPSS 22.0软件,用χ2检验对表皮葡萄球菌耐药率和耐药基因携带情况进行统计分析。 结果 166株表皮葡萄球菌药敏试验结果对万古霉素100.00% 敏感、对达托霉素93.37% 敏感,对青霉素、苯唑西林、红霉素的耐药率在90%以上,对其他抗菌药物均有不同程度的耐药;多重耐药比例为72.89%;mecA基因携带率45.78%;耐药基因携带率以norA1(100.00%)和norA2(95.78%)较高,其次为msrA(71.08%);76株mecA阳性表皮葡萄球菌中,以SCCmecⅢ型(40.79%)为主,其次为SCCmecⅤ型(22.37%)。 结论 健康人群早孕宫颈拭子表皮葡萄球菌的携带率超过50%,耐甲氧西林的表皮葡萄球菌菌株比例达24.70%,有必要回溯往期孕期妇女宫颈分泌物携带菌株分型及耐药情况,对多重耐药菌株需长期加大抗生素监管,以减少耐药菌株产生,降低新生儿败血症感染风险。 -
关键词:
- 表皮葡萄球菌 /
- mecA /
- 甲氧西林敏感表皮葡萄球菌 /
- 耐甲氧西林表皮葡萄球菌 /
- 耐药基因 /
- 葡萄球菌染色体mec盒
Abstract:Objective To analyze the antimicrobial resistance, distribution of resistance genes and staphylococcal chromosome cassette mec (SCCmec) typing in 166 strains of Staphylococcus epidermidis isolated from early pregnancy cervical swabs in Chaoyang district of Beijing during 2015–2017, and provide evidence for rational medication and infection prevention. Methods A retrospective analysis on antibiotic resistance of 166 strains of S. epidermidis isolated from early pregnancy cervical swabs in Chaoyang during 2015–2017 was conducted. K-B disk diffusion method was used to detect the susceptibility to cefoxitin. Microbroth dilution method was used to detect the susceptibility to 11 antibiotics. PCR was performed to detect drug resistance genes to erythromycin, quinolone, sulfa, aminoglycoside, macrolide and tetracycline and the genotypes and subtypes of all currently described SCCme. SPSS 22.0 was used for data analysis. Results The results showed that the sensitivity rate of 166 strains of S. epidermidis was 100% to vancomycin and 93.37% to daptomycin. The resistance rates to penicillin, oxacillin and erythromycin were above 90%, and the resistance rates to other antibiotics were different. For the 166 strains, the multi-drug resistance rate was 72.89%, the detection rate of mecA gene was 45.78%. The carriage rates of resistance genes norA1 (100%) and norA2 (95.78%) were highest, followed by msrA (71.08%). Among 76 strains of mecA gene-positive S. epidermidis, the major genotype was SCCmecⅢ (40.79%), followed by SCCmeⅤ (22.37%) . Conclusion The carrying rate of S. epidermidis in cervical swabs of healthy population was more than 50%, the detection rate of methicillin resistant S. epidermidis (MRSE) was 24.70%. It is necessary to trace back the typing and drug resistance of strain from cervical secretion of pregnant women. Long-term enhanced antibiotic supervision for multi-drug resistant strains is needed to reduce drug-resistant strains and reduce the risk for neonatal sepsis infection. -
表 1 表皮葡萄球菌14种耐药基因引物序列
Table 1. Primer sequences of 14 drug-resistant genes of S. epidermis
基因 序列号 引物序列(5′~3′) 片段大小(bp) ermA X03216 F:GTTCAAGAACAATCAATACA 421 R:GGATCAGGAAAAGGACATTT ermB M17790 F:AAGGGCATTTAAGGACGAA 425 R:ATCTGTGGTATGGCGGGTAAG ermC M17790 F:ATGCAAAACTACAGAAAATAAAC 247 R:TAAAAATAATGCCAATGAGC msrA X52085 F:GGCACAATAAGAGTGTTTAA 940 R:AAGTTATATCATGAATAGATTGTCCTGTT norA1 AY566250 F:TATTATCGGTGGAGGCGTGTTTG 432 R:TTTGCTTCTTTACGGCGTGACTT norA2 AY566250 F:GTTTATACAGATGTGAAAGCGAAGA 392 R:CAGGAATAACTAATCCAATCCCTAA sul1 CP021289.1 F:CATTGCCTGGTTGCTTCAT 238 R:ATCCGACTCGCAGCATTT sul2 CP023145.1 F:CATCATTTTCGGCATCGTC 793 R:TCTTGCGGTTTCTTTCAGC sul3 LT906556.1 F:AGATGTGATTGATTTGGGAGC 443 R:TAGTTGTTTCTGGATTAGAGCCT aac(6′)/aph(2′′) KX712118.1 F:CCAAGAGCAATAAGGGCATA 220 R:CACTATCATAACCACTACCG ant(4′,4′′) LT571449.1 F:GCAAGGACCGACAACATTTC 165 R:TGGCACAGATGGTCATAACC ant(6) KX712118.1 F:ACTGGCTTAATCAATTTGGG 597 R:GCCTTTCCGCCACCTCACCG tetM KT281947.1 F:GTGTGACGAACTTTACCGAA 501 R:GCTTTGTATCTCCAAGAACAC mecA Y006688 F:TCCAGATTACAACTTCACCAGG 162 R:CCACTTCATATCTTGTAACG 表 2 166株表皮葡萄球菌11种抗生素药物敏感试验结果
Table 2. Drug susceptibility test for 166 strains of S.epidermidis
抗生素 耐药菌株数 耐药率(%) 万古霉素 0 0.00 达托霉素 11 6.63 氯霉素 20 12.05 庆大霉素 30 18.07 环丙沙星 50 30.12 四环素 53 31.93 复方新诺明 63 37.95 克林霉素 66 39.76 红霉素 150 90.36 苯唑西林 150 90.36 青霉素 152 91.57 表 3 表皮葡萄球菌mecA阳性与mecA阴性组菌株对抗菌药物耐药情况比较
Table 3. Comparison of 76 mecA positive S. epidermidis strains and 90 mecA negative S. epidermidis strains
抗菌药物 mecA阳性组(76株) mecA阴性组(90株) χ2值 P值 耐药株数 耐药率(%) 耐菌株数 耐药率(%) 庆大霉素 19 25.00 11 12.22 4.544 0.027 红霉素 67 88.16 83 92.22 0.782 0.267 氯霉素 10 13.16 10 11.11 0.163 0.433 复方新诺明 41 53.95 22 24.44 15.231 <0.001 克林霉素 35 46.05 31 34.44 8.533 0.003 环丙沙星 34 44.74 16 17.78 14.228 <0.001 四环素 25 32.89 28 31.11 0.060 0.468 青霉素 75 98.68 77 85.56 9.197 0.002 苯唑西林 75 98.68 75 83.33 11.149 0.001 头孢西丁 41 53.94 28 31.11 8.847 0.002 表 4 耐甲氧西林与甲氧西林敏感表皮葡萄球菌对抗菌药物耐药情况比较
Table 4. Antimicrobial resistance of 41 MRSE strains and 125 methicillin sensitive strains
抗菌药物 耐甲氧西林表皮葡萄球菌(41株) 甲氧西林敏感表皮葡萄球菌(125株) χ2值 P值 耐药株数 耐药率(%) 耐药株数 耐药率(%) 庆大霉素 15 36.59 15 12.00 12.604 0.001 红霉素 40 97.56 110 88.00 3.240 0.058 氯霉素 5 12.20 15 12.00 0.000 0.582 复方新诺明 41 100.00 22 17.60 86.110 <0.001 克林霉素 25 60.98 41 32.80 10.233 0.001 环丙沙星 18 43.90 32 25.60 4.914 0.023 四环素 18 43.90 35 28.00 3.592 0.046 青霉素 41 100.00 111 88.80 2.396 0.052 苯唑西林 40 97.56 110 88.00 2.236 0.058 表 5 166株表皮葡萄球菌14种耐药基因携带情况
Table 5. Carriage of resistance genes to 14 antibiotics of 166 S. epidermidis strains
耐药基因 菌株数 携带率(%) norA1 166 100.00 norA2 159 95.78 msrA 118 71.08 mecA 76 45.78 sul1 58 34.94 aac(6′)/aph(2′′) 41 24.70 tetM 38 22.89 ermC 30 18.07 ant(4′,4′′) 7 4.22 sul2 6 3.61 ermB 5 3.01 ant(6) 3 1.81 sul3 3 1.81 ermA 0 0.00 表 6 mecA阳性与阴性组间表皮葡萄球菌耐药基因携带情况
Table 6. Antibiotic resistance gene carriages in MecA positive and negative S. epidermidis strains
耐药基因 mecA阳性组(76株) mecA阴性组(90株) χ2值 P值 菌株数 携带率(%) 菌株数 携带率(%) ermC 16 21.05 14 15.56 0.841 0.237 ermB 3 3.94 2 2.22 0.037 0.420 ant(6) 3 3.94 0 0.00 1.207 0.137 sul1 35 46.05 23 25.56 7.615 0.005 sul3 3 3.94 0 0.00 1.207 0.137 norA2 72 94.74 87 96.67 0.052 0.407 ant(4′,4′′) 6 7.89 1 1.11 3.165 0.036 sul2 5 6.58 1 1.11 2.141 0.071 tetM 23 30.26 15 16.67 4.315 0.029 aac(6′)/aph(2′′) 25 32.89 16 17.78 5.063 0.019 msrA 47 61.84 71 78.89 5.825 0.012 注:166株表皮葡萄球菌耐药基因norA1携带率为100.00%,ermA均未检出,mecA为其阳性与阴性比较,故未再列入上表进行分析 表 7 耐甲氧西林与甲氧西林敏感表皮葡萄球菌耐药基因携带情况
Table 7. Carriage of drug-resistant genes of 41 MRSE strains and 125 methicillin sensiitive strains
耐药基因 耐甲氧西林表皮葡萄球菌(41株) 甲氧西林敏感表皮葡萄球菌(125株) χ2值 P值 菌株数 携带率(%) 菌株数 携带率(%) norA2 38 92.68 121 96.80 1.296 0.234 sul1 29 70.73 29 23.20 30.684 0.000 msrA 21 51.22 90 72.00 6.018 0.013 aac(6′)/aph(2′′) 20 48.78 21 16.80 16.978 <0.001 tetM 17 41.46 21 16.80 10.639 0.002 ermC 11 26.83 19 15.20 2.820 0.077 ant(4′,4′′) 6 14.63 1 0.80 14.629 0.001 sul2 5 12.20 1 0.80 8.469 0.004 ant(6) 3 7.32 0 0.00 5.449 0.015 sul3 3 7.32 0 0.00 5.449 0.015 ermB 2 4.88 3 2.40 0.078 0.361 注:166株表皮葡萄球菌耐药基因norA1携带率100.00%,ermA均未检出,mecA区分耐甲氧西林表皮葡萄球菌与甲氧西林敏感表皮葡萄球菌,故未再列入上表进行分析 -
[1] Oza S, Lawn JE, Hogan DR, et al. Neonatal cause of death estimates for the early andlate neonatal periods for 194 countries: 2000–2013.[J]. Bull World Health Organ, 2015, 93(1): 19–28. DOI: 10.2471/BLT.14.139790. [2] Shobowale EO, Solarin AU,Elikwu CJ,et al. Neonatal sepsis in a Nigerian private tertiary hospital: Bacterial isolates, risk factors, and antibiotic susceptibility patterns[J]. Ann Afr Med, 2017, Apr-Jun;16(2): 52–58. DOI: 10.4103/aam.aam_34_16. [3] 文细毛, 徐秀华, 易霞云, 等. 我院母婴同室表皮葡萄球菌携带调查与质粒分析[J]. 中国微生态学杂志,1999,02:24–27. DOI: 10.13381/j.Cnki.cjm.1999.02.01.Wen XM, Xu XH, Yi XY, et al. Staphylococcus epidermidis in mothers and infants in our hospital[J]. Chin J Microecol, 1999, 02: 24–27. DOI: 10.13381/j.Cnki.cjm.1999.02.01. [4] Clinical and Laboratory Standards Instiute. M100-S27 Performance standands for antimicrobial susceptibility testing[S]. Wayne, PA, USA: CLSI, 2017. [5] 黄勋, 邓子德, 倪语星,等. 多重耐药菌医院感染预防与控制中国专家共识[J]. 中国感染控制杂志,2015,14(1):1–9. DOI:10.3969/j.issn.1671−9638.2015.01.001.Huang X, Deng ZD, Ni YX, et al. Chinese experts’consensus on prevention and control of multidrug resistance organism healthcare-associated infection[J]. Chin J Infect Control, 2015, 14(1): 1–9. DOI: 10.3969/j.issn.1671−9638.2015.01.001. [6] 李丽. 胎膜早破孕妇宫颈分泌物培养结果及分析[J]. 检验医学与临床,2009,1(2):15–17.Li L. Culture results and analysis of cervical secretions of pregnant women with premature rupture of membranes[J]. Lab med clin, 2009, 1(2): 15–17. [7] 卢江溢. 以呼吸窘迫为首发表现的新生儿早发型败血症临床特征[D]. 重庆: 重庆医科大学, 2016.Lu JY. The clinical characteristics of early-onset neonatal sepsis with respiratory distress as the first manifestation[D]. Chongqing: Chongqing Medical University, 2016. [8] Greenberg RG, Kandefer S, Do BT, et al. Late-onset sepsis in extremely premature infants: 2000–2011[J]. Pediatr Infect Dis J, 2017, 36(8): 774–779. DOI: 10.1097/INF.0000000000001570. [9] 周晋, 刘雪梅. 2015-2017年南京市儿童医院新生儿葡萄球菌的分布和耐药性分析[J]. 现代药物与临床, 2018, 33(12): 3388–3391. DOI: 10.7501/j. issn. 1674-5515.2018. 12.066.Zhou J, Liu XM. Analysis on distribution and drug resistance of neonatal staphylococcus in Nanjing Children's Hospital from 2015 to 2017[J]. Drug Clin , 2018, 33(12): 3388–3391. DOI: 10.7501/j. issn. 1674-5515.2018. 12.066. [10] 王光勇, 陈永刚, 周彬,等. 新生儿败血症临床致病菌的分布及其对抗菌药物的耐药性分析及治疗策略[J]. 抗感染药学,2019,16(4):590–594. DOI:10.13493/j.issn.1672−7878.2019.04−009.Wang GY, Chen YG, Zhou B, et al. Analysis on distribution and drug resistance of clinical pathogens of neonatal septicemia and its treatment strategies[J]. Anti Infect Pharm, 2019, 16(4): 590–594. DOI: 10.13493/j.issn.1672−7878.2019.04−009. [11] 全国细菌耐药监测网. 2014-2019年细菌耐药性监测报告[J]. 中国感染控制杂志,2021,20(1):15–30. DOI:10.12138/j.issn.1671−9638.20216170.China Antimicrobial Resistance Surveillance System. Antimicrobial resistance of bacteria: Surveillance report from China Antimicrobial Resistance Surveillance System in 2014–2019[J]. Chin J Infect Control, 2021, 20(1): 15–30. DOI: 10.12138/j.issn.1671−9638.20216170. [12] 付盼, 王传清, 余蕙, 等. 中国儿童细菌耐药监测组2017年儿童细菌感染及耐药监测[J]. 中国循证儿科杂志,2017,13(6):406–411. DOI:10.3969/j.issn.1673−5501.2018.06.002.Fu P, Wang CQ, Yu H, et al. Antimicrobial resistance profile of clinical isolates in pediatric hospitals in China: report from the ISPED Surveillance Program, 2017[J]. Chin J Evid Based Pediatr, 2017, 13(6): 406–411. DOI: 10.3969/j.issn.1673−5501.2018.06.002. [13] 杨蓉. 新生儿败血症274例病原菌分布及耐药性调查研究[J]. 陕西医学杂志,2019,48(8):1098–1101. DOI:10.3969/j.issn.1000−7377.2019.08.039.Yang R. Distribution and drug resistance of pathogens in 274 cases of neonatal septicemia[J]. Shanxi Med J, 2019, 48(8): 1098–1101. DOI: 10.3969/j.issn.1000−7377.2019.08.039. [14] 泰淑红, 王鹏, 邵艳, 等. 新生儿败血症病原学及耐药性情况分析[J]. 实践与检验医学,2017,35(4):461–463. DOI:10.3969/j.issn.1674−1129.2017.04.003.Tai SH, Wang P, Shao Y, et al. Drug Resistance Analysis and Distribution Characteristics of Pathogens in Neonatal Septicemia[J]. Exp lab Med, 2017, 35(4): 461–463. DOI: 10.3969/j.issn.1674−1129.2017.04.003. [15] 王芳, 杜坤, 蒋全. 2016-2019年淮南新华医疗集团新华医院新生儿科重症监护室感染性疾病病原菌分布及耐药性分析[J]. 现代药物与临床,2020,35(3):586–590. DOI:10.7501/j.issn.1674−5515.2020.03.041.Wang F, Du K, Jiang Q. Distribution and drug resistance of infectious diseases in intensive care unit of Department of Neonatology of Xinhua Medical Group Xinhua Hospital from 2016 to 2019[J]. Drug Clin, 2020, 35(3): 586–590. DOI: 10.7501/j.issn.1674−5515.2020.03.041. [16] Sun L, Sreedharan S, Plummer K, et al. NorA plasrnid resistance to fluoquinolones: role of copy number and norA frameshift mutations[J]. Antimicrob Agents Chemother, 1996, 40(7): 1665. DOI: 10.1128/AAC.40.7.1665. [17] Saber H, Jasni AS, Jamaluddin T, el a1. A Review of staphylococcal cassette chromosome mec(SCCmec) types in coagulase-negative staphylococci(CoNS) species[J]. Malays J Med Sci, 2017, 24(5): 7–18. DOI: 10.21315/mjms2017.24.5.2. [18] Chen XP, Li WG, Zheng H, et a1. Extreme diversity and multiple SCCmec elements in coagulase-negative Staphylococcus found in the clinic and community in Beijing, China[J]. Ann Clin Microbiol Antimierob, 2017, 16(1): 1–11. DOI: 10.1186/s12941−017−0231−z. [19] Enright MC, Robinson DA, Randle G, et al. The evolutionary history of methicillin-resistant Staphylococcus aureus(MRSA)[J]. Proc Natl Acad Sci USA‚2002‚99(11): 7687–7692. DOI:10.1073/pnas.122108599" target="_blank">10.1073/pnas.122108599">DOI:10.1073/pnas.122108599 [20] Song YJ, Cui LQ, Yuan Lv, et al. Characterization of clinical isolates of oxacillin- susceptible mecA - positive Staphylococcus aureus in China from 2009 to 2014[J]. J Global Antimicrob Resist, 2017, 11: 1–3. DOI: 10.1016/j.jgar.2017.05.009. [21] Zhang KY, McClure JA, Elsayed S, et al. Novel staphylococcal cassette chromosome mec type, tentatively designated type Ⅷ, harboring class A mec and type 4 ccr gene complexes in a Canadian epidemic strain of methieillin resistant Staphylococcus aureus[J]. Antimicrob Agents Chemother, 2009, 53(2): 531–540. DOI: 10.1128/AAC.01118−08. [22] 熊玉玲, 夏小荣, 朱玉林, 等. 儿童感染耐甲氧西林凝固酶阴性葡萄球菌耐药性分析及葡萄球菌盒染色体mec分子流行病学调查研究[J]. 中华实用儿科临床杂志,2016,31(10):760–764. DOI:10.3760/cma.j.issn.2095−428X.2016.10.009.Xiong YL, Xia XR, Zhu YL, et al. Study on antibiotic resistance and Staphylococcus chromosomal cassette mec molecular epidemiology of methicillin resistant coagulase-negative in children[J]. Chin J Appl Clin Pediatr, 2016, 31(10): 760–764. DOI: 10.3760/cma.j.issn.2095−428X.2016.10.009. [23] Pinheiro L, Brito CI, Pereira VC, et al. Reduced susceptibility to vancomycin and biofilm formation in methicillin-resistant Staphylococcus epidermidis isolated from blood cultures[J]. Mem Inst Oswaldo Cruz. 2014, 109(7): 871–878. DOI: 10.1590/0074-0276140120 [24] 吴泉, 邹伟华, 吴胜军, 等. 耐甲氧西林凝固酶阴性葡萄球菌SCCmec分子流行病学调查研究[J]. 中华医院感染学杂志,2013,23(8):1766–1768.Wu Q, Zou WH, Wu SJ, et al. Study on SCCmec molecular epidemiology of methicillin-resistant coagulase-negative Staphylococcu[J]. Chin J Nosocomiol, 2013, 23(8): 1766–1768. [25] 战晓微, 郑秋月. 耐甲氧西林金黄色葡萄球菌耐药性及SCCmec基因分型研究[J]. 国际检验医学杂志,2014,35(18):2512–2514. DOI:10.3969/j.issn.1673−4130.2014.18.038.Zhan XW, Zheng QY. Antimicrobial resistance and SCCmec genotype of methicillin-resistant Staphylococcus aureus[J]. Int J Lab Med, 2014, 35(18): 2512–2514. DOI: 10.3969/j.issn.1673−4130.2014.18.038. [26] 赵红梅, 彭新国, 纪冰, 等. 医院感染的金黄色葡萄球菌多重耐药机制研究[J]. 滨州医学院学报,2014,37(3):175–177.Zhao HM, Peng XG, Ji B, et al. Saphylococcus aureus resistance and resistance gene detection[J]. J Binzhou Med Univ, 2014, 37(3): 175–177. -

计量
- 文章访问数: 138
- HTML全文浏览量: 70
- PDF下载量: 15
- 被引次数: 0