成年女性甲状腺结节良/恶性检出情况及影响因素研究

张莹 马巍 李秀维 王建强 王海燕 谷云有 徐菁

张莹, 马巍, 李秀维, 王建强, 王海燕, 谷云有, 徐菁. 成年女性甲状腺结节良/恶性检出情况及影响因素研究[J]. 疾病监测, 2022, 37(5): 694-700. doi: 10.3784/jbjc.202109240519
引用本文: 张莹, 马巍, 李秀维, 王建强, 王海燕, 谷云有, 徐菁. 成年女性甲状腺结节良/恶性检出情况及影响因素研究[J]. 疾病监测, 2022, 37(5): 694-700. doi: 10.3784/jbjc.202109240519
Zhang Ying, Ma Wei, Li Xiuwei, Wang Jianqiang, Wang Haiyan, Gu Yunyou, Xu Jing. Analysis on detections of benign and malignant thyroid nodules and risk factors in adult women in China[J]. Disease Surveillance, 2022, 37(5): 694-700. doi: 10.3784/jbjc.202109240519
Citation: Zhang Ying, Ma Wei, Li Xiuwei, Wang Jianqiang, Wang Haiyan, Gu Yunyou, Xu Jing. Analysis on detections of benign and malignant thyroid nodules and risk factors in adult women in China[J]. Disease Surveillance, 2022, 37(5): 694-700. doi: 10.3784/jbjc.202109240519

成年女性甲状腺结节良/恶性检出情况及影响因素研究

doi: 10.3784/jbjc.202109240519
详细信息
    作者简介:

    张莹,女,安徽省安庆市人,博士,副研究员,主要从事营养与疾病防治,Email:zhangying@ninh.chinacdc.cn

    通讯作者:

    徐菁,Tel:010–61733282,Email:xujing@ninh.chinacdc.cn

  • 中图分类号: R211; R591.1

Analysis on detections of benign and malignant thyroid nodules and risk factors in adult women in China

More Information
  • 摘要:   目的   调查我国成年女性甲状腺结节患病情况及良/恶性的检出率,研究影响甲状腺结节分级的危险因素。  方法   于2018 — 2019年在山东、河南、河北和浙江省随机选择18~60岁妇女进行调查,调查内容包括膳食情况,体格检查,水样、盐样、尿样、血样等样本采集及甲状腺B超检查。 采用描述性研究、单因素logistic 回归和偏比例优势模型分析甲状腺结节检出情况及结节分级的影响因素。  结果   纳入研究的2 082人,其中无结节[甲状腺影像和数据报告系统(TI-RADS)1级]、良性结节(TI-RADS 2级)、可能是良性结节(TI-RADS 3级)、可疑或很可能是恶性结节(TI-RADS 4或5级)检出率分别为43.32%、21.23%、14.51%、20.94%。 偏比例优势模型结果显示,年龄、超重肥胖、有甲状腺疾病史对甲状腺结节良/恶性分级的影响有统计学意义(P<0.05)。  结论  年龄增大、超重和肥胖、有甲状腺疾病史是成年女性甲状腺结节良/恶性分级的危险因素,应对老年人、肥胖人群以及有甲状腺病史高危人群的甲状腺结节进行重点筛查。
  • 表  1  纳入分析的变量与赋值

    Table  1.   Variables and assignments included in analysis

      变 量赋  值进入方式
    甲状腺结节分级TI-RADS 1级=0,TI-RADS 2级=1,TI-RADS 3级=2,TI-RADS 4或5级=3因变量(有序多分类变量)
    年龄(岁)≤35=0,36~45=1,>45=2哑变量,以第一类为参照组
    体质指数(kg/m2体过轻=0,正常=1,超重=2,肥胖=3哑变量,以第二类为参照组
    职业体力劳动者=0,,非体力劳动者=1二分类变量
    甲状腺家族病史无=0,有=1二分类变量
    甲状腺疾病史无=0,有=1二分类变量
    高血压无=0,有=1二分类变量
    甲状腺肿大无=0,有=1二分类变量
    总碘摄入量(μg/d)<85 =0,85~119 =1,120~600 =2,≥600 =3哑变量,以第二类为参照组
    尿碘(μg/L)<100 =0,100~199 =1,200~299 =2,≥300=3哑变量,以第二类为参照组
    血清碘(μg/L)<45 =0,45~90 =1,>90 =2哑变量,以第二类为参照组
    下载: 导出CSV

    表  2  研究对象甲状腺结节检出情况

    Table  2.   Prevalence of thyroid nodules in study subjects

      项目调查人数TI-RADS 1级TI-RADS 2级TI-RADS 3级TI-RADS 4或5级
    人数构成比(%)人数构成比(%)人数构成比(%)人数构成比(%)
    年龄组(岁)
     ≤3546924728.0711225.934816.676214.90
     36~4562929333.3011626.859031.2513031.25
     >4591834038.6320447.2215052.0822453.85
    职业
     体力劳动者69331235.7414734.519433.2214033.73
     非体力劳动者130456164.2627965.4918966.7827566.27
    甲状腺家族病史
     有102485.46122.7782.80348.17
     无191283194.5442197.2327897.2038291.83
    甲状腺疾病史
     有184556.244510.44155.266916.59
     无182982693.7638689.5627094.7434783.41
    BMI(kg/m2
     过轻45303.34112.5031.0110.23
     正常89543548.3918341.5910133.8917640.55
     超重69327230.2614733.4111839.6015635.94
     肥胖43816218.029922.507625.5010123.27
    高血压
     否160071279.3832975.8124281.4831773.21
     是46118520.6210524.195518.5211626.79
    甲状腺肿大
     否2 02288197.8943799.0929497.6741095.79
     是48192.1140.9172.33184.21
    总碘摄入量(μg/d)
     <8560283.18122.7793.14112.64
     85~119116525.90225.08134.53296.95
     120~600146264072.6429868.8222277.3530272.42
     >60038016118.2710123.334314.987517.99
    尿碘(μg/L)
     <10032615317.836916.51196.628520.43
     100~19953324027.9710725.606422.3012229.33
     200~299161758.74235.503411.85296.97
     ≥30095939045.4521952.3917059.2318043.27
    血清碘(μg/L)
     <4551262.91143.2031.0281.87
     45~901 88281090.6040291.9927593.8639592.29
     >90119586.49214.81155.12255.84
     注:TI-RADS. 甲状腺影像和数据报告系统
    下载: 导出CSV

    表  3  甲状腺结节良/恶性分级影响因素的单因素logistic 回归分析结果

    Table  3.   Logistic regression analysis on risk factors for thyroid nodules grading (univariate analysis)

      变量哑变量因变量β标准误Wald χ2POR95% 可信区间比例优势假定
    下限上限χ2P
    年龄组(岁)36~45 0.3620.1159.9900.0021.4361.1471.7978.5940.072
    >450.6810.10740.838<0.0011.9761.6042.435
    BMI过轻−0.9070.3247.8540.0050.4040.2140.76111.1140.085
    超重0.3430.09313.682<0.0011.4091.1751.691
    肥胖0.4050.10714.460<0.0011.4991.2171.848
    职业0.0760.0860.7740.3791.0790.9111.2770.0960.953
    甲状腺家族病史30.6950.21810.1790.0012.0031.3073.06821.976<0.001
    20.2840.2071.8790.1701.3280.8851.992
    1−0.1450.2040.5090.4760.8650.5801.289
    甲状腺疾病史30.9410.16433.108<0.0012.5631.8603.53121.798<0.001
    20.5010.15610.3000.0011.6501.2152.240
    10.6580.16815.400<0.0011.9321.3902.683
    高血压30.3080.1246.1430.0131.3611.0671.7366.7470.034
    20.0940.1100.7270.3941.0980.8861.362
    10.1790.1082.7770.0961.1960.9691.477
    甲状腺肿大30.8580.3038.0110.0052.3591.3024.27410.5510.005
    20.7110.2935.8930.0152.0351.1473.611
    10.1640.2990.3030.5821.1790.6562.116
    总碘摄入量<85−0.1550.2920.2820.5960.8560.4831.51910.7000.098
    (μg/d)120~600−0.0340.1760.0370.8470.9670.6841.365
    ≥600−0.0700.1940.1320.7160.9320.6371.363
    尿碘(μg/L)<10030.1720.1631.1200.2901.1880.8631.63569.006<0.001
    <1002−0.1350.1500.8110.3680.8740.6521.172
    <1001−0.0770.1410.2960.5870.9260.7021.221
    [200~299]3−0.3010.2301.7190.1900.7400.4721.161
    [200~299]20.1820.1850.9620.3271.1990.8341.724
    [200~299]1−0.0630.1800.1210.7280.9390.6601.338
    ≥3003−0.2510.1323.5920.0580.7780.6011.009
    ≥30020.0700.1130.3810.5371.0720.8591.338
    ≥30010.1780.1092.6680.1021.1950.9651.480
    血清碘(μg/L)<45−0.4030.2692.2540.1330.6680.3951.1314.7640.312
    >90−0.1530.1750.7700.3800.8580.6091.208
    下载: 导出CSV

    表  4  甲状腺结节良/恶性分级影响因素的偏比例优势模型分析

    Table  4.   Partial proportional odds model analysis on thyroid nodules grading(multivariable analysis)

     变量
    虚拟
    变量
    因变量参数
    估计
    标准误Wald χ2POR
    95% 可信区间
    下限上限
    截距3−2.0100.111329.329<0.001
    截距2−1.2230.104139.113<0.001
    截距1−0.3280.10010.7880.001
    年龄组(岁)36~450.2820.1185.7440.0171.3261.0531.669
    >450.5700.11026.953<0.0011.7691.4262.193
    体质指数体重过轻−0.7880.3225.9880.0140.4550.2420.855
    超重0.3350.09811.708<0.0011.3971.1541.692
    肥胖0.3750.11211.282<0.0011.4541.1691.81
    甲状腺疾病史30.9610.17430.686<0.0012.6141.8613.672
    20.4990.1669.0710.0031.6471.1902.278
    10.6830.17714.914<0.0011.9801.4002.801
    下载: 导出CSV
  • [1] 范雪, 唐钰姣, 巴妍·谢开, 等. 健康体检人群超声检查乳腺结节与甲状腺结节发病率的相关性[J]. 影像研究与医学应用,2020,4(12):129–131. DOI:10.3969/j.issn.2096−3807.2020.12.085.

    Fan X, Tang YJ, Bayan XK, et al. Correlation between breast nodule and thyroid nodule incidence by ultrasonography in healthy people[J]. J Imag Res Med Appl, 2020, 4(12): 129–131. DOI: 10.3969/j.issn.2096−3807.2020.12.085.
    [2] 王东梅, 周茜, 霍煜廷, 等. 甲状腺结节的影响因素研究进展[J]. 中国普通外科杂志,2018,27(5):635–641. DOI:10.3978/j.issn.1005−6947.2018.05.017.

    Wang DM, Zhou Q, Huo YT, et al. Research progress of influential factors for thyroid nodules[J]. Chin J Gen Surg, 2018, 27(5): 635–641. DOI: 10.3978/j.issn.1005−6947.2018.05.017.
    [3] 孙可欣, 郑荣寿, 张思维, 等. 2015年中国分地区恶性肿瘤发病和死亡分析[J]. 中国肿瘤,2019,28(1):1–11. DOI:10.11735/j.issn.1004−0242.2019.01.A001.

    Sun KX, Zheng RS, Zhang SW, et al. Report of cancer incidence and mortality in different areas of China, 2015[J]. China Cancer, 2019, 28(1): 1–11. DOI: 10.11735/j.issn.1004−0242.2019.01.A001.
    [4] 申淑霞, 刘书芳, 杨改景, 等. 超声TI-RADS分级对甲状腺结节良恶性的诊断价值[J]. 临床医学,2021,41(3):66–68. DOI:10.19528/j.issn.1003−3548.2021.03.028.

    Shen SX, Liu SF, Yang GJ, et al. Diagnostic value of ultrasonic TI-RADS grading for benign and malignant thyroid nodules[J]. Clin Med, 2021, 41(3): 66–68. DOI: 10.19528/j.issn.1003−3548.2021.03.028.
    [5] 赖晓英, 欧阳平, 朱宏, 等. 甲状腺结节检出情况及影响因素: 10年309 576例体检人群分析[J]. 南方医科大学学报,2020,40(2):268–273. DOI:10.12122/j.issn.1673−4254.2020.02.20.

    Lai XY, Ouyang P, Zhu H, et al. Detection rate of thyroid nodules in routine health check-up and its influencing factors: a 10-year survey of 309 576 cases[J]. J South Med Univ, 2020, 40(2): 268–273. DOI: 10.12122/j.issn.1673−4254.2020.02.20.
    [6] 田春园, 卜野, 纪春磊, 等. 黑龙江省中老年人群甲状腺结节流行病学特征及其影响因素[J]. 中华地方病学杂志,2020,39(5):347–352. DOI:10.3760/cma.j.cn231583−20200407−00076.

    Tian CY, Bu Y, Ji CL, et al. Epidemiological characteristics and influencing factors of thyroid nodule in middle-aged and elderly people in Heilongjiang province[J]. Chin J Endemiol, 2020, 39(5): 347–352. DOI: 10.3760/cma.j.cn231583−20200407−00076.
    [7] 惠嘉丽, 艾祝宁. 健康体检人群甲状腺结节的检出率及影响因素研究[J]. 贵州医药,2021,45(2):288–289. DOI:10.3969/j.issn.1000−744X.2021.02.057.

    Hui JL, Ai ZN. Study on the detection rate and influencing factors of thyroid nodules in healthy people[J]. Guizhou Med J, 2021, 45(2): 288–289. DOI: 10.3969/j.issn.1000−744X.2021.02.057.
    [8] 中国肥胖问题工作组. 中国成人超重和肥胖症预防与控制指南(节录)[J]. 营养学报,2004,26(1):1–4. DOI:10.3321/j.issn:0512−7955.2004.01.001.

    Working Group on Obesity in China. Guidelines for the prevention and control of overweight and obesity in chinese adults[J]. Acta Nutr Sin, 2004, 26(1): 1–4. DOI: 10.3321/j.issn:0512−7955.2004.01.001.
    [9] 中国高血压防治指南修订委员会, 高血压联盟(中国), 中华医学会心血管病学分会, 等. 中国高血压防治指南(2018年修订版)[J]. 中国心血管杂志,2019,24(1):24–56. DOI:10.3969/j.issn.1007−5410.2019.01.002.

    China Hypertension Prevention and Treatment Guidelines Revision Committee, CHL, Chinese Society of Cardiology, et al. 2018 Chinese guidelines for the management of hypertension writing group of 2018[J]. Chin J Cardiovasc Med, 2019, 24(1): 24–56. DOI: 10.3969/j.issn.1007−5410.2019.01.002.
    [10] 王海燕, 刘列钧, 李淑华, 等. 适合缺碘及高碘地区水碘检测的方法研究[J]. 中国地方病学杂志,2007,26(3):333–336. DOI:10.3760/cma.j.issn.1000−4955.2007.03.035.

    Wang HY, Liu LJ, Li SH, et al. Determination of iodine in drinking water by As3+-Ce4+ catalytic spectrophotometry[J]. Chin J Endemiol, 2007, 26(3): 333–336. DOI: 10.3760/cma.j.issn.1000−4955.2007.03.035.
    [11] 中华人民共和国国家卫生和计划生育委员会. WS/T 107.1-2016 尿中碘的测定 第1部分: 砷铈催化分光光度法 [S]. 北京: 中国标准出版社, 2016.

    National Health and Family Planning Commission, PRC. WS/T 107.1-2016 Determination of iodine in urine-Part 1: As3+-Ce4+catalytic spectrophotometry[S]. Beijing: Standards Press of China, 2016.
    [12] 中华人民共和国国家卫生和计划生育委员会. WS/T 572-2017 血清中碘的测定 砷铈催化分光光度法[S]. 北京: 中国标准出版社, 2017.

    National Health and Family Planning Commission, PRC. WS/T 572-2017 Determination of iodine in serum - As3+[S]. Beijing: Standards Press of China, 2017.
    [13] Kwak JY, Han KH, Yoon JH, et al. Thyroid imaging reporting and data system for US features of nodules: a step in establishing better stratification of cancer risk[J]. Radiology, 2011, 260(3): 892–899. DOI:  10.1148/radiol.11110206.
    [14] Pemayun TGD. Current diagnosis and management of thyroid nodules[J]. Acta Med Indones, 2016, 48(3): 247–257.
    [15] 高勇. 甲状腺结节良恶性的多因素分析预测[J]. 数理医药学杂志,2017,30(4):501–503. DOI:10.3969/j.issn.1004−4337.2017.04.012.

    Gao Y. Multivariate analysis and prediction of benign and malignant thyroid nodules[J]. J Math Med, 2017, 30(4): 501–503. DOI: 10.3969/j.issn.1004−4337.2017.04.012.
    [16] Haugen BR, Alexander EK, Bible KC, et al. 2015 American thyroid association management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: the American thyroid association guidelines task force on thyroid nodules and differentiated thyroid cancer[J]. Thyroid, 2016, 26(1): 1–133. DOI:  10.1089/thy.2015.0020.
    [17] 邱华, 马步云, 赵萌. 甲状腺良恶性结节超声鉴别诊断的影响因素探讨[J]. 西部医学,2016,28(4):545–547,551. DOI:10.3969/j.issn.1672−3511.2016.04.026.

    Qiu H, Ma BY, Zhao M. Influential factor analysis of benign and malignant thyroid nodules with ultrasound identification[J]. Med J West China, 2016, 28(4): 545–547,551. DOI: 10.3969/j.issn.1672−3511.2016.04.026.
    [18] 张靖. 甲状腺癌临床新特点及评估甲状腺结节良恶性模型的建立[D]. 济南: 山东大学, 2020.

    Zhang J. Changes in clinical features of thyroid cancer and a quantitative method for predicting malignancy in thyroid nodules[D]. Ji′nan: Shandong University, 2020.
    [19] 郇琴. 6304例甲状腺结节患者流行病学特点及恶性结节危险因素分析[D]. 济南: 山东大学, 2014.

    Huan Q. Epidemiological characteristics of thyroid nodules and risk factors of malignant nodules: a retrospective study from 6304 surgical cases[D]. Ji′nan: Shandong University, 2014.
    [20] 邹冰, 王新, 孙丽, 等. 健康体检人群甲状腺结节患病率及其与代谢性疾病的关系研究[J]. 中国全科医学,2020,23(19):2423–2428. DOI:10.12114/j.issn.1007−9572.2020.00.089.

    Zou B, Wang X, Sun L, et al. Prevalence of thyroid nodules in health checkups and its relationship with metabolic diseases[J]. Chin Gen Pract, 2020, 23(19): 2423–2428. DOI: 10.12114/j.issn.1007−9572.2020.00.089.
    [21] 杜丹, 李阳桦, 陈艳伟, 等. 甲状腺结节危险因素的Meta分析[J]. 职业与健康,2016,32(8):1034–1037. DOI: 10.13329/j.cnki.zyyjk.2016.0286.

    Du D, Li YH, Chen YW, et al. Meta-analysis on risk factors of thyroid nodules[J]. Occup Health, 2016, 32(8): 1034–1037. DOI:  10.13329/j.cnki.zyyjk.2016.0286.
    [22] 罗景梅, 冯家钢, 詹东, 等. 甲状腺结节患者临床特征研究[J]. 中国全科医学,2018,21(36):4445–4452,4458. DOI:10.12114/j.issn.1007−9572.2018.00.109.

    Luo JM, Feng JG, Zhan D, et al. Study on clinical characteristics of thyroid nodules[J]. Chin Gen Pract, 2018, 21(36): 4445–4452,4458. DOI: 10.12114/j.issn.1007−9572.2018.00.109.
    [23] 孙荣欣, 郑召辉, 张强, 等. 人群体质量指数与甲状腺结节患病率及其恶性风险分层的相关性[J]. 川北医学院学报,2021,36(1):72–75. DOI:10.3969/j.issn.1005−3697.2021.01.017.

    Sun RX, Zheng ZH, Zhang Q, et al. Correlation between the body mass index with thyroid nodule prevalence and risk stratification[J]. J North Sichuan Med Coll, 2021, 36(1): 72–75. DOI: 10.3969/j.issn.1005−3697.2021.01.017.
    [24] Rezzonico J, Rezzonico M, Pusiol E, et al. Introducing the thyroid gland as another victim of the insulin resistance syndrome[J]. Thyroid, 2008, 18(4): 461–464. DOI:  10.1089/thy.2007.0223.
    [25] Xu WM, Chen ZX, Li N, et al. Relationship of anthropometric measurements to thyroid nodules in a Chinese population[J]. BMJ Open, 2015, 5(12): e008452. DOI: 10.1136/bmjopen−2015−008452.
    [26] Bétry C, Challan-Belval MA, Bernard A, et al. Increased TSH in obesity: evidence for a BMI-independent association with leptin[J]. Diabetes Metab, 2015, 41(3): 248–251. DOI:  10.1016/j.diabet.2014.11.009.
    [27] 高芳凤, 郑伍桂, 车春, 等. 健康体检人群甲状腺结节相关因素研究[J]. 华南预防医学,2019,45(6):536–539. DOI: 10.12183/j.scjpm.2019.0537.

    Gao FF, Zheng WG, Che C, et al. Related factors of thyroid nodules in healthy physical examination people[J]. South China J Prev Med, 2019, 45(6): 536–539. DOI:  10.12183/j.scjpm.2019.0537.
    [28] 吴少彬, 彭林平, 苗思慧, 等. 惠州地区居民碘营养状况调查及甲状腺结节的危险因素分析[J]. 实用预防医学,2018,25(7):814–817. DOI:10.3969/j.issn.1006−3110.2018.07.013.

    Wu SB, Peng LP, Miao SH, et al. Status of iodine nutrition and risk factors of thyroid nodules among residents in Huizhou region[J]. Pract Prev Med, 2018, 25(7): 814–817. DOI: 10.3969/j.issn.1006−3110.2018.07.013.
    [29] 李彦娟, 王磊, 王钰, 等. 甲状腺结节发病率调查及影响因素分析[J]. 中国综合临床,2020,36(5):455–459. DOI:10.3760/cma.j.cn121361−20191221−00090.

    Li YJ, Wang L, Wang Y, et al. Analysis of incidence rate and influencing factors of thyroid nodules[J]. Clin Med China, 2020, 36(5): 455–459. DOI: 10.3760/cma.j.cn121361−20191221−00090.
    [30] Lall R, Campbell MJ, Walters SJ, et al. A review of ordinal regression models applied on health-related quality of life assessments[J]. Stat Methods Med Res, 2002, 11(1): 49–67. DOI:  10.1191/0962280202sm271ra.
    [31] 唐俐玲, 翟晓红, 王萍, 等. 偏比例优势模型在有序分类资料中的应用[J]. 山西医科大学学报,2010,41(8):685–687. DOI:10.3969/J.ISSN.1007−6611.2010.08.006.

    Tang LL, Zhai XH, Wang P, et al. The application of partial proportional odds model in the ordinal data[J]. J Shanxi Med Univ, 2010, 41(8): 685–687. DOI: 10.3969/J.ISSN.1007−6611.2010.08.006.
  • 加载中
计量
  • 文章访问数:  110
  • HTML全文浏览量:  105
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-24
  • 网络出版日期:  2022-02-08
  • 刊出日期:  2022-05-31

目录

    /

    返回文章
    返回

    在线交流

    防诈骗公告

    近期有不法分子以本刊编辑身份添加作者微信,请务必提高警惕!本刊关于稿件的一切事项通知均采用编辑部唯一邮箱(jbjc@icdc.cn)和座机(010-58900732)联系作者,且在录用稿件后仅收取版面费,无其他任何名目费用(如审稿费和加急费等),非编辑部邮箱发送的本刊收费用通知等均为诈骗,不要随意汇入款项!如有可疑及时致电编辑部核实确认!