普通拟杆菌Bv46益生功能评估

乔蕾 徐明超 林晓颖 张素平 张桂 杨晶 孙晖 刘丽云 徐建国

乔蕾, 徐明超, 林晓颖, 张素平, 张桂, 杨晶, 孙晖, 刘丽云, 徐建国. 普通拟杆菌Bv46益生功能评估[J]. 疾病监测, 2022, 37(5): 579-584. doi: 10.3784/jbjc.202202280075
引用本文: 乔蕾, 徐明超, 林晓颖, 张素平, 张桂, 杨晶, 孙晖, 刘丽云, 徐建国. 普通拟杆菌Bv46益生功能评估[J]. 疾病监测, 2022, 37(5): 579-584. doi: 10.3784/jbjc.202202280075
Qiao Lei, Xu Mingchao, Lin Xiaoying, Zhang Suping, Zhang Gui, Yang Jing, Sun Hui, Liu Liyun, Xu Jianguo. Evaluation of the probiotic properties of Bacteroides vulgatus Bv46[J]. Disease Surveillance, 2022, 37(5): 579-584. doi: 10.3784/jbjc.202202280075
Citation: Qiao Lei, Xu Mingchao, Lin Xiaoying, Zhang Suping, Zhang Gui, Yang Jing, Sun Hui, Liu Liyun, Xu Jianguo. Evaluation of the probiotic properties of Bacteroides vulgatus Bv46[J]. Disease Surveillance, 2022, 37(5): 579-584. doi: 10.3784/jbjc.202202280075

普通拟杆菌Bv46益生功能评估

doi: 10.3784/jbjc.202202280075
基金项目: 未知微生物发现和功能研究(No. 2018RU010)
详细信息
    作者简介:

    乔蕾,女,山西省临汾市人,在读硕士研究生,主要从事传染病的病原学研究,Email:joerena0220@163.com

    通讯作者:

    徐建国,Tel:010–58900749,Email:xujianguo@icdc.cn

  • 中图分类号: R211; R331; R378.99.

Evaluation of the probiotic properties of Bacteroides vulgatus Bv46

Funds: This study was supported by Research Units of Discovery of Unknown Bacteria and Function (No. 2018RU010)
More Information
  • 摘要:   目的  评估普通拟杆菌(Bacteroides vulgatus)Bv46的生物特性和益生潜能。  方法  模拟胃肠道的酸性和胆盐环境,评估普通拟杆菌Bv46耐逆性特点;通过溶血、药敏和明胶酶定性实验评估其安全性;基于其自聚集、疏水性和对HT-29细胞的黏附情况评估其黏附能力;利用琼脂扩散、色谱和吸光度测定,评估Bv46对致病菌的拮抗、产酸和抗氧化功能。  结果  分离自健康人群的普通拟杆菌Bv46在模拟胃液和0.3%胆盐中的存活率分别为59.55%和63.76%;无溶血现象和明胶酶活性,除对氨苄西林和青霉素G耐药外,对其他所检测抗生素均敏感;Bv46具有中等自聚集能力、高疏水性和对HT-29细胞的中等黏附性;对致病性大肠埃希菌和鼠伤寒沙门菌的生长有抑制作用;此外,Bv46可以产生短链脂肪酸,并且具有抗氧化作用。  结论  普通拟杆菌Bv46是潜在的益生菌。
  • 图  1  普通拟杆菌Bv46溶血和明胶酶活性检测结果

    注:A. 普通拟杆菌Bv46溶血实验阴性;B. 普通拟杆菌Bv46明胶酶实验阴性;C. 金黄色葡萄球菌(ATCC 25923)作为明胶实验阳性对照9

    Figure  1.  Haemolytic and gelatinase activity of Bacteroides vulgatus Bv46

    图  2  普通拟杆菌Bv46黏附HT-29细胞的结果

    注:1 000倍光学显微镜下观察普通拟杆菌Bv46黏附HT-29细胞的情况。不加菌的HT-29细胞作为黏附的空白对照,植物乳杆菌HT121作为阳性对照

    Figure  2.  Adhesion of Bacteroides vulgatus Bv46 to HT-29 cell

    表  1  普通拟杆菌Bv46对酸和0.3%胆盐耐受性

    Table  1.   Acid and 0.3% bile salt resistance of Bacteroides vulgatus Bv46

    菌株名称酸耐受性a
    (存活率,%)
    0.3%胆盐耐受性
    (存活率,%)
    普通拟杆菌Bv4659.55±0.1863.76±0.85
    注:a. pH值3.0的含有3 g/L胃蛋白酶的BHI液体培养基
    下载: 导出CSV

    表  2  用 E-test试纸条检测普通拟杆菌Bv46的抗生素敏感性

    Table  2.   Antibiotic susceptibility test of Bacteroides vulgatus Bv46 by E-test strips

    抗生素名称普通拟杆菌Bv46
    氨苄西林耐药
    青霉素G耐药
    阿莫西林–克拉维酸敏感
    头孢曲松敏感
    美罗培南敏感
    四环素敏感
    克林霉素敏感
    氯霉素敏感
    甲硝唑敏感
    下载: 导出CSV

    表  3  普通拟杆菌Bv46自聚集、疏水性和DPPH自由基清除率结果

    Table  3.   The self-aggregation, hydrophobicity and DPPH free radical scavenging rate of Bacteroides vulgatus Bv46

     菌株名称自聚集
    (%)
    疏水性
    (%)
    DPPH自由基
    清除率(%)
    普通拟杆菌Bv4638.53±1.3269.27±1.5681.43±2.01
    植物乳杆菌HT12173.32±1.4564.70±1.7898.87±1.64
    下载: 导出CSV

    表  4  普通拟杆菌Bv46对致病菌的抑制作用

    Table  4.   Antimicrobial activity against pathogens of Bacteroides vulgatus Bv46

    致病菌名称大肠埃希菌
    (CICC 24186)
    大肠埃希菌
    (ATCC 43895)
    鼠伤寒沙门菌
    (ATCC 14028)
    金黄色葡萄球菌
    (ATCC 25923)
    李斯特菌
    ( ATCCBAA-697)
    抑菌情况++++++
    注:符号与直径的对应关系:−. 无抑菌圈;+. 2~6 mm抑菌圈;++. 7~11 mm抑菌圈
    下载: 导出CSV

    表  5  普通拟杆菌Bv46培养上清液的pH监测及短链脂肪酸含量测定

    Table  5.   pH value and short chain fatty acids in the culture supernatents of Bacteroides vulgatus Bv46

    上清液pH监测上清中短链脂肪酸含量测定(μg/mL)
    0 h pH24h pH乙酸丙酸异丁酸丁酸
    7.40±0.035.88±0.091486.21173.756.070.95
    下载: 导出CSV
  • [1] Wexler AG, Goodman AL. An insider's perspective: Bacteroides as a window into the microbiome[J]. Nat Microbiol, 2017, 2(5): 17026. DOI:  10.1038/nmicrobiol.2017.26.
    [2] Waidmann M, Bechtold O, Frick JS, et al. Bacteroides vulgatus protects against escherichia coli-induced colitis in gnotobiotic interleukin-2-deficient mice[J]. Gastroenterology, 2003, 125(1): 162–177. DOI: 10.1016/S0016−5085(03)00672−3.
    [3] Li SJ, Wang C, Zhang CC, et al. Evaluation of the effects of different Bacteroides vulgatus strains against DSS-induced colitis[J]. J Immunol Res, 2021, 2021: 9117805. DOI:  10.1155/2021/9117805.
    [4] Santacroce L, Charitos IA, Bottalico L. A successful history: probiotics and their potential as antimicrobials[J]. Expert Rev Anti Infect Ther, 2019, 17(8): 635–645. DOI:  10.1080/14787210.2019.1645597.
    [5] Chua JCL, Hale JDF, Silcock P, et al. Bacterial survival and adhesion for formulating new oral probiotic foods[J]. Crit Rev Food Sci, 2020, 60(17): 2926–2937. DOI:  10.1080/10408398.2019.1669528.
    [6] Angmo K, Kumari A, Savitri N, et al. Probiotic characterization of lactic acid bacteria isolated from fermented foods and beverage of Ladakh[J]. Lwt-Food Sci Technol, 2016, 66: 428–435. DOI:  10.1016/j.lwt.2015.10.057.
    [7] Humphries R, Bobenchik AM, Hindler JA, et al. Overview of changes to the clinical and laboratory standards institute performance standards for antimicrobial susceptibility testing, M100, 31st Edition[J]. J Clin Microbiol, 2021, 59(12): JCM0021321. DOI: 10.1128/JCM.00213−21.
    [8] Kondrotiene K, Lauciene L, Andruleviciute V, et al. Safety assessment and preliminary in vitro evaluation of probiotic potential of Lactococcus lactis strains naturally present in raw and fermented milk[J]. Curr Microbiol, 2020, 77(10): 3013–3023. DOI: 10.1007/s00284−020−02119−8.
    [9] Ribeiro SC, Coelho MC, Todorov SD, et al. Technological properties of bacteriocin-producing lactic acid bacteria isolated from Pico cheese an artisanal cow's milk cheese[J]. J Appl Microbiol, 2014, 116(3): 573–585. DOI:  10.1111/jam.12388.
    [10] del Re B, Sgorbati B, Miglioli M, et al. Adhesion, autoaggregation and hydrophobicity of 13 strains of Bifidobacterium longum[J]. Lett Appl Microbiol, 2000, 31(6): 438–442. DOI: 10.1046/j.1365−2672.2000.00845.
    [11] Kos B, Susković J, Vuković S, et al. Adhesion and aggregation ability of probiotic strain Lactobacillus acidophilus M92[J]. J Appl Microbiol, 2003, 94(6): 981–987. DOI: 10.1046/j.1365−2672.2003.01915.x.
    [12] Li XP, Xiao YC, Song LQ, et al. Effect of Lactobacillus plantarum HT121 on serum lipid profile, gut microbiota, and liver transcriptome and metabolomics in a high-cholesterol diet–induced hypercholesterolemia rat model[J]. Nutrition, 2020, 79-80: 110966. DOI:  10.1016/j.nut.2020.110966.
    [13] Sui Y, Liu JT, Liu YX, et al. In vitro probiotic characterization of Lactobacillus strains from fermented tangerine vinegar and their cholesterol degradation activity[J]. Food Biosci, 2021, 39: 100843. DOI:  10.1016/j.fbio.2020.100843.
    [14] Liu LY, Zhang L, Zhou HJ, et al. Antimicrobial resistance and molecular characterization of Citrobacter spp. causing extraintestinal infections[J]. Front Cell Infect Microbiol, 2021, 11: 737636. DOI:  10.3389/fcimb.2021.737636.
    [15] Abe Sato ST, Marques JM, da Luz de freitas A, et al. Isolation and genetic identification of endophytic lactic acid bacteria from the Amazonian açai fruits: probiotics features of selected strains and their potential to inhibit pathogens[J]. Front Microbiol, 2021, 11: 610524. DOI:  10.3389/fmicb.2020.610524.
    [16] Patrignani F, Parolin C, D'alessandro M, et al. Evaluation of the fate of Lactobacillus crispatus BC4, carried in Squacquerone cheese, throughout the simulator of the human intestinal microbial ecosystem (SHIME)[J]. Food Res Int, 2020, 137: 109580. DOI:  10.1016/j.foodres.2020.109580.
    [17] Bian X, Evivie SE, Muhammad Z, et al. In vitro assessment of the antimicrobial potentials of Lactobacillus helveticus strains isolated from traditional cheese in Sinkiang China against food-borne pathogens[J]. Food Funct, 2016, 7(2): 789–797. DOI:  10.1039/c5fo01041a.
    [18] Shivangi S, Devi PB, Ragul K, et al. Probiotic potential of Bacillus strains isolated from an acidic fermented food Idli[J]. Probiotics Antimicrob Proteins, 2020, 12(4): 1502–1513. DOI: 10.1007/s12602−020−09650.
    [19] Botes M, Loos B, Van Reenen CA, et al. Adhesion of the probiotic strains Enterococcus mundtii ST4SA and Lactobacillus plantarum 423 to Caco-2 cells under conditions simulating the intestinal tract, and in the presence of antibiotics and anti-inflammatory medicaments[J]. Arch Microbiol, 2008, 190(5): 573–584. DOI: 10.1007/s00203−008−0408−0.
    [20] Duary RK, Rajput YS, Batish VK, et al. Assessing the adhesion of putative indigenous probiotic lactobacilli to human colonic epithelial cells[J]. Indian J Med Res, 2011, 134(5): 664–671. DOI: 10.4103/0971−5916.90992.
    [21] Monteagudo-Mera A, Rastall RA, Gibson GR, et al. Adhesion mechanisms mediated by probiotics and prebiotics and their potential impact on human health[J]. Appl Microbiol Biotechnol, 2019, 103(16): 6463–6472. DOI: 10.1007/s00253−019−09978−7.
    [22] Vinolo MAR, Rodrigues HG, Nachbar RT, et al. Regulation of inflammation by short chain fatty acids[J]. Nutrients, 2011, 3(10): 858–876. DOI:  10.3390/nu3100858.
    [23] De Almeida Júnior WLG, Ferrari ÍDS, De Souza JV, et al. Characterization and evaluation of lactic acid bacteria isolated from goat milk[J]. Food Control, 2015, 53: 96–103. DOI:  10.1016/j.foodcont.2015.01.013.
    [24] Ebrahimi M, Sadeghi A, Rahimi D, et al. Postbiotic and anti-aflatoxigenic capabilities of Lactobacillus kunkeei as the potential probiotic LAB isolated from the natural honey[J]. Probiotics Antimicro, 2021, 13(2): 343–355. DOI: 10.1007/s12602−020−09697.
    [25] Zhang L, Cui YJ, Yang YY, et al. The virulence factor GroEL promotes gelatinase secretion from cells in the osteoblast lineage: implication for direct crosstalk between bacteria and adult cells[J]. Arch Oral Biol, 2021, 122: 104991. DOI:  10.1016/j.archoralbio.2020.104991.
    [26] Sóki J, Wybo I, Hajdú E, et al. A Europe-wide assessment of antibiotic resistance rates in Bacteroides and Parabacteroides isolates from intestinal microbiota of healthy subjects[J]. Anaerobe, 2020, 62: 102182. DOI:  10.1016/j.anaerobe.2020.102182.
    [27] Arokiyaraj S, Hairul Islam VI, Bharanidharan R, et al. Antibacterial, anti-inflammatory and probiotic potential of Enterococcus hirae isolated from the rumen of Bos primigenius[J]. World J Microbiol Biotechnol, 2014, 30(7): 2111–2118. DOI: 10.1007/s11274−014−1625−0.
    [28] Han Q, Kong BH, Chen Q, et al. In vitro comparison of probiotic properties of lactic acid bacteria isolated from Harbin dry sausages and selected probiotics[J]. J Func Foods, 2017, 32: 391–400. DOI:  10.1016/j.jff.2017.03.020.
    [29] Soltan-Dallal M, Mojarrad M, Baghbani F, et al. Effects of probiotic Lactobacillus acidophilus and Lactobacillus casei on colorectal tumor cells activity (CaCo-2)[J]. Arch Iran Med, 2015, 18(3): 167–172.
    [30] Ragul K, Syiem I, Sundar K, et al. Characterization of probiotic potential of Bacillus species isolated from a traditional brine pickle[J]. J Food Sci Technol, 2017, 54(13): 4473–4483. DOI: 10.1007/s13197−017−2928−6.
    [31] Hojjati M, Behabahani BA, Falah F. Aggregation, adherence, anti-adhesion and antagonistic activity properties relating to surface charge of probiotic Lactobacillus brevis gp104 against Staphylococcus aureus[J]. Microb Pathog, 2020, 147: 104420. DOI:  10.1016/j.micpath.2020.104420.
    [32] Caggia C, De Angelis M, Pitino I, et al. Probiotic features of Lactobacillus strains isolated from ragusano and pecorino siciliano cheeses[J]. Food Microbiol, 2015, 50: 109–117. DOI:  10.1016/j.fm.2015.03.010.
    [33] Tejero-Sariñena S, Barlow J, Costabile A, et al. In vitro evaluation of the antimicrobial activity of a range of probiotics against pathogens: evidence for the effects of organic acids[J]. Anaerobe, 2012, 18(5): 530–538. DOI:  10.1016/j.anaerobe.2012.08.004.
    [34] Hong L, Kim WS, Lee SM, et al. Pullulan nanoparticles as prebiotics enhance the antibacterial properties of Lactobacillus plantarum through the induction of mild stress in probiotics[J]. Front Microbiol, 2019, 10: 142. DOI:  10.3389/fmicb.2019.00142.
    [35] Jang HJ, Lee NK, Paik HD. Lactobacillus brevis Probiotic characterization of KU15153 showing antimicrobial and antioxidant effect isolated from kimchi[J]. Food Sci Biotechnol, 2019, 28(5): 1521–1528. DOI: 10.1007/s10068−019−00576.
    [36] Fukuda S, Toh H, Hase K, et al. Bifidobacteria can protect from enteropathogenic infection through production of acetate[J]. Nature, 2011, 469(7331): 543–547. DOI:  10.1038/nature09646.
    [37] Arpaia N, Campbell C, Fan XY, et al. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation[J]. Nature, 2013, 504(7480): 451–455. DOI:  10.1038/nature12726.
    [38] Furusawa Y, Obata Y, Fukuda S, et al. Erratum: Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells[J]. Nature, 2014, 506(7487): 254. DOI:  10.1038/nature13041.
  • 加载中
图(2) / 表(5)
计量
  • 文章访问数:  109
  • HTML全文浏览量:  85
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-28
  • 录用日期:  2022-04-15
  • 网络出版日期:  2022-04-15
  • 刊出日期:  2022-05-31

目录

    /

    返回文章
    返回

    在线交流

    防诈骗公告

    近期有不法分子以本刊编辑身份添加作者微信,请务必提高警惕!本刊关于稿件的一切事项通知均采用编辑部唯一邮箱(jbjc@icdc.cn)和座机(010-58900732)联系作者,且在录用稿件后仅收取版面费,无其他任何名目费用(如审稿费和加急费等),非编辑部邮箱发送的本刊收费用通知等均为诈骗,不要随意汇入款项!如有可疑及时致电编辑部核实确认!