[1]
|
Wiedenbeck J, Cohan FM. Origins of bacterial diversity through horizontal genetic transfer and adaptation to new ecological niches[J]. FEMS Microbiol Rev, 2011, 35(5): 957–976. DOI: 10.1111/j.1574−6976.2011.00292.x.
|
[2]
|
Partridge SR, Kwong SM, Firth N, et al. Mobile genetic elements associated with antimicrobial resistance[J]. Clin Microbiol Rev, 2018, 31(4): e00088–17. DOI: 10.1128/CMR.00088−17.
|
[3]
|
Hussain FA, Dubert J, Elsherbini J, et al. Rapid evolutionary turnover of mobile genetic elements drives bacterial resistance to phages[J]. Science, 2021, 374(6566): 488–492. DOI: 10.1126/science.abb1083.
|
[4]
|
Stokes HW, Gillings MR. Gene flow, mobile genetic elements and the recruitment of antibiotic resistance genes into gram-negative pathogens[J]. FEMS Microbiol Rev, 2011, 35(5): 790–819. DOI: 10.1111/j.1574−6976.2011.00273.x.
|
[5]
|
Rankin DJ, Rocha EPC, Brown SP. What traits are carried on mobile genetic elements, and why?[J]. Heredity, 2011, 106(1): 1–10. DOI: 10.1038/hdy.2010.24.
|
[6]
|
Huq MI, Alam AK, Brenner DJ, et al. Isolation of Vibrio-like group, EF-6, from patients with diarrhea[J]. J Clin Microbiol, 1980, 11(6): 621–624. DOI: 10.1128/jcm.11.6.621−624.1980.
|
[7]
|
Huang KC, Hsu RWW. Vibrio fluvialis hemorrhagic cellulitis and cerebritis[J]. Clin Infect Dis, 2005, 40(9): 75–77. DOI: 10.1086/429328.
|
[8]
|
Bellet J, Klein B, Altieri M, et al. Vibrio fluvialis, an unusual pediatric enteric pathogen[J]. Pediatr Emerg Care, 1989, 5(1): 27–28. DOI: 10.1097/00006565−198903000−00008.
|
[9]
|
张晶, 和鹏, 周勇, 等. 2018年广州市水产品中创伤弧菌和河弧菌检测分析[J]. 中国食品卫生杂志,2019,31(6):570–573. DOI: 10.13590/j.cjfh.2019.06.013.Zhang J, He P, Zhou Y, et al. Detection and characterization of Vibrio vulnificus and Vibrio fluvialis in aquatic products of Guangzhou, 2018[J]. Chin J Food Hyg, 2019, 31(6): 570–573. DOI: 10.13590/j.cjfh.2019.06.013.
|
[10]
|
段良松, 廖红军, 谢群, 等. 一起河弧菌污染学校饮用水源引起感染性腹泻病暴发的调查分析[J]. 实用预防医学,2004,11(5):971. DOI:10.3969/j.issn.1006−3110.2004.05.053.Duan LS, Liao HJ, Xie Q, et al. Investigation and analysis of an outbreak of infectious diarrheal disease caused by Vibrio fluvialis contamination of school drinking water sources[J]. Pract Prevent Med, 2004, 11(5): 971. DOI: 10.3969/j.issn.1006−3110.2004.05.053.
|
[11]
|
张晓逸. 一起河弧菌和豚鼠气单胞菌引起的食物中毒调查[J]. 江苏预防医学,2003,14(2):85. DOI:10.3969/j.issn.1006−9070.2003.02.062.Zhang XY. Investigation of a case of food poisoning caused by Vibrio fluvialis and Aeromonas caviae[J]. Jiangsu J Prev Med, 2003, 14(2): 85. DOI: 10.3969/j.issn.1006−9070.2003.02.062.
|
[12]
|
郜杏丽. 一起由河弧菌引起的食物中毒[J]. 现代预防医学,2007,34(8):1572,1574. DOI:10.3969/j.issn.1003−8507.2007.08.084.Gao XL. A case of food poisoning caused by Vibrio fluvialis[J]. Modern Prevent Med, 2007, 34(8): 1572,1574. DOI: 10.3969/j.issn.1003−8507.2007.08.084.
|
[13]
|
Okoh AI, Igbinosa EO. Antibiotic susceptibility profiles of some Vibrio strains isolated from wastewater final effluents in a rural community of the Eastern Cape province of South Africa[J]. BMC Microbiol, 2010, 10(1): 143. DOI: 10.1186/1471−2180−10−143.
|
[14]
|
Zheng HY, Huang YM, Liu P, et al. Population genomics of the food-borne pathogen Vibrio fluvialis reveals lineage associated pathogenicity-related genetic elements[J]. Microb Genom, 2022, 8(2): 000769. DOI: 10.1099/mgen.0.000769.
|
[15]
|
Jain C, Rodriguez-R LM, Phillippy AM, et al. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries[J]. Nat Commun, 2018, 9(1): 5114. DOI: 10.1038/s41467−018−07641−9.
|
[16]
|
Durrant MG, Li MM, Siranosian BA, et al. A bioinformatic analysis of integrative mobile genetic elements highlights their role in bacterial adaptation[J]. Cell Host Microbe, 2020, 27(1): 140–153.e9. DOI: 10.1016/j.chom.2019.10.022.
|
[17]
|
Seemann T. Prokka: rapid prokaryotic genome annotation[J]. Bioinformatics, 2014, 30(14): 2068–2069. DOI: 10.1093/bioinformatics/btu153.
|
[18]
|
Xie ZQ, Tang HX. ISEScan: automated identification of insertion sequence elements in prokaryotic genomes[J]. Bioinformatics, 2017, 33(21): 3340–3347. DOI: 10.1093/bioinformatics/btx433.
|
[19]
|
Arndt D, Grant JR, Marcu A, et al. PHASTER: a better, faster version of the PHAST phage search tool[J]. Nucleic Acids Res, 2016, 44(W1): W16–W21. DOI: 10.1093/nar/gkw387.
|
[20]
|
Galata V, Fehlmann T, Backes C, et al. PLSDB: a resource of complete bacterial plasmids[J]. Nucleic Acids Res, 2019, 47(D1): D195–D202. DOI: 10.1093/nar/gky1050.
|
[21]
|
Huerta-Cepas J, Szklarczyk D, Heller D, et al. eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses[J]. Nucleic Acids Res, 2019, 47(D1): D309–D314. DOI: 10.1093/nar/gky1085.
|
[22]
|
Shiryev SA, Papadopoulos JS, Schäffer AA, et al. Improved BLAST searches using longer words for protein seeding[J]. Bioinformatics, 2007, 23(21): 2949–2951. DOI: 10.1093/bioinformatics/btm479.
|
[23]
|
Liu B, Zheng DD, Zhou SY, et al. VFDB 2022: a general classification scheme for bacterial virulence factors[J]. Nucleic Acids Res, 2022, 50(D1): D912–D917. DOI: 10.1093/nar/gkab1107.
|
[24]
|
Bortolaia V, Kaas RS, Ruppe E, et al. ResFinder 4.0 for predictions of phenotypes from genotypes[J]. J Antimicrob Chemother, 2020, 75(12): 3491–3500. DOI: 10.1093/jac/dkaa345.
|
[25]
|
Hall JPJ, Brockhurst MA, Harrison E. Sampling the mobile gene pool: innovation via horizontal gene transfer in bacteria[J]. Philos Trans Roy Soc Lond B Biol Sci, 2017, 372(1735): 20160424. DOI: 10.1098/rstb.2016.0424.
|
[26]
|
Wu Y, Liu C, Li WG, et al. Independent microevolution mediated by mobile genetic elements of individual Clostridium difficile isolates from clade 4 revealed by whole-genome sequencing[J]. mSystems, 2019, 4(2): e00252–18. DOI: 10.1128/mSystems.00252−18.
|
[27]
|
Chowdhury G, Ramamurthy T, Ghosh A, et al. Emergence of azithromycin resistance mediated by phosphotransferase-encoding mph(A) in diarrheagenic Vibrio fluvialis[J]. mSphere, 2019, 4(3): e00215–19. DOI: 10.1128/mSphere.00215−19.
|
[28]
|
Ho BT, Dong TG, Mekalanos JJ. A view to a kill: the bacterial type VI secretion system[J]. Cell Host Microbe, 2014, 15(1): 9–21. DOI: 10.1016/j.chom.2013.11.008.
|
[29]
|
García-Bayona L, Coyne MJ, Comstock LE. Mobile Type Ⅵ secretion system loci of the gut Bacteroidales display extensive intra-ecosystem transfer, multi-species spread and geographical clustering[J]. PLoS Genet, 2021, 17(4): e1009541. DOI: 10.1371/journal.pgen.1009541.
|