河弧菌可移动遗传元件的预测与分析

黄元铭 李臻鹏 程倩 韩雨 梁未丽

黄元铭, 李臻鹏, 程倩, 韩雨, 梁未丽. 河弧菌可移动遗传元件的预测与分析[J]. 疾病监测, 2022, 37(5): 591-597. doi: 10.3784/jbjc.202203180102
引用本文: 黄元铭, 李臻鹏, 程倩, 韩雨, 梁未丽. 河弧菌可移动遗传元件的预测与分析[J]. 疾病监测, 2022, 37(5): 591-597. doi: 10.3784/jbjc.202203180102
Huang Yuanming, Li Zhenpeng, Cheng Qian, Han Yu, Liang Weili. Prediction and analysis of mobile gene elements in Vibrio fluvialis[J]. Disease Surveillance, 2022, 37(5): 591-597. doi: 10.3784/jbjc.202203180102
Citation: Huang Yuanming, Li Zhenpeng, Cheng Qian, Han Yu, Liang Weili. Prediction and analysis of mobile gene elements in Vibrio fluvialis[J]. Disease Surveillance, 2022, 37(5): 591-597. doi: 10.3784/jbjc.202203180102

河弧菌可移动遗传元件的预测与分析

doi: 10.3784/jbjc.202203180102
基金项目: 国家自然科学基金(No. 81772242);国家重点研发计划(No. 2021YFC2300302)
详细信息
    作者简介:

    黄元铭,男,北京市人,病原生物学硕士,助理研究员,主要从事河弧菌致病机制研究,Email:huangyuanming@icdc.cn

    通讯作者:

    梁未丽,Tel:010–58900744,Email:liangweili@icdc.cn

  • 中图分类号: R211; R378.2

Prediction and analysis of mobile gene elements in Vibrio fluvialis

Funds: This study was supported by the fund for National Natural Science Foundation of China (No. 81772242) and National Key Research and Development Program (No. 2021YFC2300302)
More Information
  • 摘要:   目的  研究河弧菌中可移动遗传元件的种类和分布,探究其对河弧菌适应性进化的意义。  方法  从公共数据库中获取170株河弧菌的基因组数据,使用MGEfinder软件识别河弧菌中的可移动遗传元件,并对其种类、插入活性、分布及毒力因子进行研究。  结果  170株河弧菌基因组中共识别到1 227个可移动遗传元件。 这些元件可归类为完整噬菌体、不完整噬菌体、插入序列、含有第二类内含子的元件、含有丝氨酸/酪氨酸重组酶的元件、含有末端重复序列和编码基因的元件、只含有编码基因的元件以及不含任何开放读码框的元件共8类。 317个代表性元件序列簇中有307个转座活性都较低,但高转座活性的可移动遗传元件在河弧菌中分布更广泛。 可移动遗传元件携带的编码基因的功能主要涉及基因复制、重组、修复,以及基因转录等。 可移动遗传元件在环境分离株和临床分离株的分布没有差异。 在插入序列、含有丝氨酸/酪氨酸重组酶的元件、含有末端重复序列和编码基因的元件以及只含有编码基因的元件这4种可移动遗传元件中识别到多种毒力因子,且不同的可移动遗传元件携带的毒力因子不同。  结论  河弧菌含有多种类型、多种功能的可移动遗传元件,表现出以高转座活性可移动遗传元件为主导的适应性进化特征。
  • 图  1  MGEfinder识别的河弧菌中可移动遗传元件的G+C含量和种类

    注:A. 河弧菌可移动遗传元件与基因组的G+C含量比较;B. 可移动遗传元件的分类;a. P<0.001

    Figure  1.  G+C content and types of MGEs identified by MGEfinder workflow in V. fluvialis

    图  2  河弧菌可移动遗传元件的转座活性

    注:A. 代表性元件序列簇的转座活性;B. 不同转座活性的代表性元件序列簇的构成比例;C. 不同转座活性的代表性元件序列簇的序列长度;D. 不同转座活性的代表性元件序列簇在河弧菌中的分布;a. P<0.001

    Figure  2.  Transposition activity of mobile genetic elements in V. fluvialis

    图  3  河弧菌泛基因组和可移动遗传元件编码基因的COG功能分类

    注:A. 河弧菌泛基因组编码基因的COG功能分类;B. 河弧菌可移动遗传元件编码基因的COG功能分类

    Figure  3.  COG functional classifications of genes encoding pan-genome and mobile genetic elements in V. fluvialis

    图  4  可移动遗传元件在河弧菌基因组中的分布

    注:参考菌株ATCC33809使用箭头标示出

    Figure  4.  Distribution of mobile genetic elements in genome of V. fluvialis

    图  5  河弧菌中可移动遗传元件的毒力因子

    Figure  5.  Virulence factors identified in mobile genetic elements in V. fluvialis

  • [1] Wiedenbeck J, Cohan FM. Origins of bacterial diversity through horizontal genetic transfer and adaptation to new ecological niches[J]. FEMS Microbiol Rev, 2011, 35(5): 957–976. DOI: 10.1111/j.1574−6976.2011.00292.x.
    [2] Partridge SR, Kwong SM, Firth N, et al. Mobile genetic elements associated with antimicrobial resistance[J]. Clin Microbiol Rev, 2018, 31(4): e00088–17. DOI: 10.1128/CMR.00088−17.
    [3] Hussain FA, Dubert J, Elsherbini J, et al. Rapid evolutionary turnover of mobile genetic elements drives bacterial resistance to phages[J]. Science, 2021, 374(6566): 488–492. DOI:  10.1126/science.abb1083.
    [4] Stokes HW, Gillings MR. Gene flow, mobile genetic elements and the recruitment of antibiotic resistance genes into gram-negative pathogens[J]. FEMS Microbiol Rev, 2011, 35(5): 790–819. DOI: 10.1111/j.1574−6976.2011.00273.x.
    [5] Rankin DJ, Rocha EPC, Brown SP. What traits are carried on mobile genetic elements, and why?[J]. Heredity, 2011, 106(1): 1–10. DOI:  10.1038/hdy.2010.24.
    [6] Huq MI, Alam AK, Brenner DJ, et al. Isolation of Vibrio-like group, EF-6, from patients with diarrhea[J]. J Clin Microbiol, 1980, 11(6): 621–624. DOI: 10.1128/jcm.11.6.621−624.1980.
    [7] Huang KC, Hsu RWW. Vibrio fluvialis hemorrhagic cellulitis and cerebritis[J]. Clin Infect Dis, 2005, 40(9): 75–77. DOI:  10.1086/429328.
    [8] Bellet J, Klein B, Altieri M, et al. Vibrio fluvialis, an unusual pediatric enteric pathogen[J]. Pediatr Emerg Care, 1989, 5(1): 27–28. DOI: 10.1097/00006565−198903000−00008.
    [9] 张晶, 和鹏, 周勇, 等. 2018年广州市水产品中创伤弧菌和河弧菌检测分析[J]. 中国食品卫生杂志,2019,31(6):570–573. DOI: 10.13590/j.cjfh.2019.06.013.

    Zhang J, He P, Zhou Y, et al. Detection and characterization of Vibrio vulnificus and Vibrio fluvialis in aquatic products of Guangzhou, 2018[J]. Chin J Food Hyg, 2019, 31(6): 570–573. DOI:  10.13590/j.cjfh.2019.06.013.
    [10] 段良松, 廖红军, 谢群, 等. 一起河弧菌污染学校饮用水源引起感染性腹泻病暴发的调查分析[J]. 实用预防医学,2004,11(5):971. DOI:10.3969/j.issn.1006−3110.2004.05.053.

    Duan LS, Liao HJ, Xie Q, et al. Investigation and analysis of an outbreak of infectious diarrheal disease caused by Vibrio fluvialis contamination of school drinking water sources[J]. Pract Prevent Med, 2004, 11(5): 971. DOI: 10.3969/j.issn.1006−3110.2004.05.053.
    [11] 张晓逸. 一起河弧菌和豚鼠气单胞菌引起的食物中毒调查[J]. 江苏预防医学,2003,14(2):85. DOI:10.3969/j.issn.1006−9070.2003.02.062.

    Zhang XY. Investigation of a case of food poisoning caused by Vibrio fluvialis and Aeromonas caviae[J]. Jiangsu J Prev Med, 2003, 14(2): 85. DOI: 10.3969/j.issn.1006−9070.2003.02.062.
    [12] 郜杏丽. 一起由河弧菌引起的食物中毒[J]. 现代预防医学,2007,34(8):1572,1574. DOI:10.3969/j.issn.1003−8507.2007.08.084.

    Gao XL. A case of food poisoning caused by Vibrio fluvialis[J]. Modern Prevent Med, 2007, 34(8): 1572,1574. DOI: 10.3969/j.issn.1003−8507.2007.08.084.
    [13] Okoh AI, Igbinosa EO. Antibiotic susceptibility profiles of some Vibrio strains isolated from wastewater final effluents in a rural community of the Eastern Cape province of South Africa[J]. BMC Microbiol, 2010, 10(1): 143. DOI: 10.1186/1471−2180−10−143.
    [14] Zheng HY, Huang YM, Liu P, et al. Population genomics of the food-borne pathogen Vibrio fluvialis reveals lineage associated pathogenicity-related genetic elements[J]. Microb Genom, 2022, 8(2): 000769. DOI:  10.1099/mgen.0.000769.
    [15] Jain C, Rodriguez-R LM, Phillippy AM, et al. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries[J]. Nat Commun, 2018, 9(1): 5114. DOI: 10.1038/s41467−018−07641−9.
    [16] Durrant MG, Li MM, Siranosian BA, et al. A bioinformatic analysis of integrative mobile genetic elements highlights their role in bacterial adaptation[J]. Cell Host Microbe, 2020, 27(1): 140–153.e9. DOI:  10.1016/j.chom.2019.10.022.
    [17] Seemann T. Prokka: rapid prokaryotic genome annotation[J]. Bioinformatics, 2014, 30(14): 2068–2069. DOI:  10.1093/bioinformatics/btu153.
    [18] Xie ZQ, Tang HX. ISEScan: automated identification of insertion sequence elements in prokaryotic genomes[J]. Bioinformatics, 2017, 33(21): 3340–3347. DOI:  10.1093/bioinformatics/btx433.
    [19] Arndt D, Grant JR, Marcu A, et al. PHASTER: a better, faster version of the PHAST phage search tool[J]. Nucleic Acids Res, 2016, 44(W1): W16–W21. DOI:  10.1093/nar/gkw387.
    [20] Galata V, Fehlmann T, Backes C, et al. PLSDB: a resource of complete bacterial plasmids[J]. Nucleic Acids Res, 2019, 47(D1): D195–D202. DOI:  10.1093/nar/gky1050.
    [21] Huerta-Cepas J, Szklarczyk D, Heller D, et al. eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses[J]. Nucleic Acids Res, 2019, 47(D1): D309–D314. DOI:  10.1093/nar/gky1085.
    [22] Shiryev SA, Papadopoulos JS, Schäffer AA, et al. Improved BLAST searches using longer words for protein seeding[J]. Bioinformatics, 2007, 23(21): 2949–2951. DOI:  10.1093/bioinformatics/btm479.
    [23] Liu B, Zheng DD, Zhou SY, et al. VFDB 2022: a general classification scheme for bacterial virulence factors[J]. Nucleic Acids Res, 2022, 50(D1): D912–D917. DOI:  10.1093/nar/gkab1107.
    [24] Bortolaia V, Kaas RS, Ruppe E, et al. ResFinder 4.0 for predictions of phenotypes from genotypes[J]. J Antimicrob Chemother, 2020, 75(12): 3491–3500. DOI:  10.1093/jac/dkaa345.
    [25] Hall JPJ, Brockhurst MA, Harrison E. Sampling the mobile gene pool: innovation via horizontal gene transfer in bacteria[J]. Philos Trans Roy Soc Lond B Biol Sci, 2017, 372(1735): 20160424. DOI:  10.1098/rstb.2016.0424.
    [26] Wu Y, Liu C, Li WG, et al. Independent microevolution mediated by mobile genetic elements of individual Clostridium difficile isolates from clade 4 revealed by whole-genome sequencing[J]. mSystems, 2019, 4(2): e00252–18. DOI: 10.1128/mSystems.00252−18.
    [27] Chowdhury G, Ramamurthy T, Ghosh A, et al. Emergence of azithromycin resistance mediated by phosphotransferase-encoding mph(A) in diarrheagenic Vibrio fluvialis[J]. mSphere, 2019, 4(3): e00215–19. DOI: 10.1128/mSphere.00215−19.
    [28] Ho BT, Dong TG, Mekalanos JJ. A view to a kill: the bacterial type VI secretion system[J]. Cell Host Microbe, 2014, 15(1): 9–21. DOI:  10.1016/j.chom.2013.11.008.
    [29] García-Bayona L, Coyne MJ, Comstock LE. Mobile Type Ⅵ secretion system loci of the gut Bacteroidales display extensive intra-ecosystem transfer, multi-species spread and geographical clustering[J]. PLoS Genet, 2021, 17(4): e1009541. DOI:  10.1371/journal.pgen.1009541.
  • 加载中
图(5)
计量
  • 文章访问数:  87
  • HTML全文浏览量:  56
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-18
  • 网络出版日期:  2022-04-15
  • 刊出日期:  2022-05-31

目录

    /

    返回文章
    返回

    在线交流

    防诈骗公告

    近期有不法分子以本刊编辑身份添加作者微信,请务必提高警惕!本刊关于稿件的一切事项通知均采用编辑部唯一邮箱(jbjc@icdc.cn)和座机(010-58900732)联系作者,且在录用稿件后仅收取版面费,无其他任何名目费用(如审稿费和加急费等),非编辑部邮箱发送的本刊收费用通知等均为诈骗,不要随意汇入款项!如有可疑及时致电编辑部核实确认!