Bibliometric analysis of COVID-19 related literature, based on Web of Science Core Collection.
-
摘要:
目的 从文献计量学角度了解新型冠状病毒(以下简称“新冠”)相关文献的研究现状、进展和热点趋势,为构建以新冠文献为基础的细致分类体系提供数据支撑。 方法 以Web of Science平台为数据来源,利用VOSviewer、CiteSpace等工具的分析和可视化功能,检索2020年1月1日至2022年1月5日期间发表的新冠相关的英文文献,对其发表时间、国家、关键词、机构、学科类别等进行分析。 结果 共检索到158413篇新冠相关的英文,高频关键词有Mental health, COVID-19 infection, Risk factors, Health-care, COVID-19 vaccine等,主要呈现5个聚类。 影响力最大的4个研究领域为普通内科学、公共卫生,环境卫生与职业卫生、传染病。 发文量最多的机构为哈佛医学院,发文被引量最多的机构为华中科技大学。 在所有国家中,美国和中国的发文量和被引量、基金资助频次处于领先水平,中国国家自然科学基金委员会对于新冠文献的资助频次最高,排名前10位的基金中有4项来源于中国。 结论 新冠的研究热点从公共卫生领域、临床医学领域逐渐发展到到社会环境、经济、教育和生活等方面,影响逐步扩大。 此外,对于新冠文献研究领域和学科的具体分类需要进一步细化。 Abstract:Objective This study conducted bibliometric analysis of COVID-19 related literature, to understand the research status of COVID-19, explore the latest progress and research trends in the field of COVID-19 research, and provide data support for the construction of a comprehensive and detail system based on COVID-19 literature. Methods Using Web of Science as the data source, using VOSviewer and CiteSpace as visualization tools, this study searched English literature related to COVID-19 published between January 2020 and January 2022, and analyzed the publication time, country, key words, institution and discipline category of the literature. Results A total of 158 413 articles or reviews related to COVID-19 were retrieved. The high-frequency keywords include Mental health, COVID-19 infection, Risk factors, Health-care and COVID-19 vaccine, etc., which mainly present 5 clusters. The four most influential subject categories are general internal medicine, public, environmental and occupational health, and infectious diseases. The organization with the most publications is Harvard Medical School, and the organization with the most citations is Huazhong University of Science and Technology. Among all countries, the United States and China are at the leading level in the number of publications, citations, and funding frequency. The National Natural Science Foundation of China has the highest funding frequency for COVID-19 research, four of the top ten funds are from China. Conclusion The research focus of COVID-19 has gradually expanded from public health and clinical medicine to social environment, economy, education and life, and its influence has gradually expanded. In addition, the specific classification of research fields and disciplines of COVID-19 literature needs to be further refined. -
Key words:
- Coronavirus disease 2019 /
- SARS-CoV-2 /
- Bibliometrics /
- Visualization
-
表 1 新冠相关文献高频关键词排序
Table 1. Rank of high-frequency key words of COVID-19 related literatures
序号 关键词 频次 关联强度 1 Mental health 11895 10915 2 COVID-19 infection 10004 8962 3 Risk factors 6732 6236 4 Health-care 5759 5186 5 COVID-19 vaccine 5456 4602 6 Mortality 5153 4702 7 Model 4794 4098 8 Transmission 3778 3305 9 Telehealth 3641 2962 10 Isolation 3550 3054 表 2 新冠相关文献学科类别
Table 2. Categories of COVID-19 related publications
序号 分类 学科类别 关联强度 1 GENERAL & INTERNAL MEDICINE 普通内科学 29966 2 PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH 公共卫生、环境卫生与职业卫生 19255 3 INFECTIOUS DISEASES 传染病 11239 4 SCIENCE & TECHNOLOGY OTHER TOPICS 科学技术和其他 10709 5 IMMUNOLOGY 免疫学 8882 6 ENVIRONMENTAL SCIENCES & ECOLOGY 环境科学与生态学 8820 7 NEUROSCIENCES & NEUROLOGY 神经科学与神经学 7882 8 PHARMACOLOGY & PHARMACY 药理学和药剂学 7863 表 3 新冠发文被引量机构、国家和基金排名
Table 3. Rank of organizations, countries and grants of COVID-19 related literatures
机构排名 机构名称 国家排名 国家名称 基金排名 资助基金名称 1 华中科技大学 1 美国 1 国家自然科学基金委员会 2 武汉大学 2 中国 2 美国卫生与公众服务部–国立卫生研究院 3 中国科学院 3 英国 3 英国研究与创新–医学研究委员会 4 首都医科大学 4 意大利 4 国家重点研发计划 5 哈佛医学院 5 德国 5 美国国家科学基金会 6 牛津大学 6 法国 6 英国惠康基金会 7 香港大学 7 加拿大 7 中央高校基本科研专项资金 8 清华大学 8 澳大利亚 8 欧洲联盟委员会 9 北京协和医学院 9 西班牙 9 中国博士后科学基金 10 上海交通大学 10 印度 10 美国国立卫生研究院(NIH)–国家转化科学促进中心(NCATS) -
[1] WHO. Statement on the second meeting of the International Health Regulations(2005)Emergency Committee regarding the outbreak of novel coronavirus(2019-nCoV)[EB/OL]. (2020−01−30)[2022−03−25]. https://www.who.int/news/item/30-01-2020-statement-on-the-second-meeting-of-the-international-health-regulations-(2005)-emergency-committee-regarding-the-outbreak-of-novel-coronavirus-(2019-ncov). [2] Clarivate. Web of Science Core Collection[EB/OL]. (2022−01−05)[2022−03−25]. http://app.webofknowledge.com. [3] Ranjbari, Meisam and Shams Esfandabadi, Zahra and Gautam, et al. Waste management beyond the COVID-19 pandemic: Bibliometric and text mining analyses[J]. Gondwana Research, 2022. [4] Lithgow-Serrano, Oscar and Cornelius, Joseph and Kanjirangat, et al. Improving classification of low-resource COVID-19 literature by using Named Entity Recognition[J]. Genomics & Informatics, 2021, 19(3): e22. [5] Utkarsh, Marianna Sigala. A bibliometric review of research on COVID-19 and tourism: Reflections for moving forward[J]. Tourism Management Perspectives, 2021, 40: 100912. [6] van Eck, Nees Jan and Waltman, Ludo. Visualizing Bibliometric Networks[J]. Measuring Scholarly Impact. 2014: 285−320. [7] 王保红, 魏屹东. 从科学学科分类体系看自然科学学科发展态势[J]. 情报科学,2012,30(6):930–936.Wang BH, Wei YD. Development Trends of Nature Science Disciplines According to Classification Systems of Science Disciplines[J]. Information Science, 2012, 30(6): 930–936. [8] Chen Q, Allot A, Lu Z. LitCovid: an open database of COVID-19 literature[J]. Nucleic Acids Research, 2021, 49(D1): D1534–D1540. [9] CNKI. Open Access Online-First Publishing Knowledge Service Platform of Fighting against Novel Coronavirus Pneumonia[EB/OL]. (2021-10-13)[2022-03-24]. https://cajn.cnki.net/xgbt. [10] Dimensions. The world’s largest linked research information dataset[EB/OL]. (2021-10-15)[2022-04-20]. https://app.dimensions.ai/discover/publication?search_mode=content. -