cAMP受体蛋白对嗜水气单胞菌生长初期胆汁耐受性的影响

萨磊 张婧雯 南征 马立艳 苏建荣 周妍妍

萨磊, 张婧雯, 南征, 等. cAMP受体蛋白对嗜水气单胞菌生长初期胆汁耐受性的影响[J]. 疾病监测, 2022, 37(12): 1599-1603. doi: 10.3784/jbjc.202207080319
引用本文: 萨磊, 张婧雯, 南征, 等. cAMP受体蛋白对嗜水气单胞菌生长初期胆汁耐受性的影响[J]. 疾病监测, 2022, 37(12): 1599-1603. doi: 10.3784/jbjc.202207080319
Sa Lei, Zhang Jingwen, Nan Zheng, et al. Impacting of cAMP receptor protein on the bile tolerance of Aeromonas hydrophila in early growth[J]. Dis Surveill, 2022, 37(12): 1599-1603. doi: 10.3784/jbjc.202207080319
Citation: Sa Lei, Zhang Jingwen, Nan Zheng, et al. Impacting of cAMP receptor protein on the bile tolerance of Aeromonas hydrophila in early growth[J]. Dis Surveill, 2022, 37(12): 1599-1603. doi: 10.3784/jbjc.202207080319

cAMP受体蛋白对嗜水气单胞菌生长初期胆汁耐受性的影响

doi: 10.3784/jbjc.202207080319
基金项目: 北京市自然科学基金(No. 7164249);首都卫生发展科研专项(No. 2021-1G-3014)
详细信息
    作者简介:

    萨磊,男,北京市人,本科,主管技师,主要从事病原微生物的研究工作,Email:448080053@qq.com

    通讯作者:

    周妍妍, Tel:010−63138545, Email:zhouyanyan1216@163.com

  • 中图分类号: R211; R378.3

Impacting of cAMP receptor protein on the bile tolerance of Aeromonas hydrophila in early growth

Funds: This study was supported by Beijing Natural Science Foundation (No. 7164249) and Capital's Funds for Health Improvement and Research (No. 2021-1G-3014)
More Information
  • 摘要:   目的  本研究拟确定cAMP 受体蛋白 对嗜水气单胞菌胆汁耐受性的影响。  方法  构建嗜水气单胞菌的luxS、crp的缺失株及crp回补株,通过胆汁生长实验确定嗜水气单胞菌及其构建株的胆汁耐受性。  结果   嗜水气单胞菌BJ018、BJ018ΔluxS和BJ018Δcrp在LB培养基中生长速度基本一致。 10%胆汁LB中,BJ018和缺失株ΔluxS前8 h生长被抑制,后期呈对数快速生长;其缺失株Δcrp生长速度领先于野生株,早期生长未被抑制。 嗜水气单胞菌BJ018Δcrp的回补株早期生长重新被抑制,与野生株BJ018基本一致。 其他两株嗜水气单胞菌BJ017、BJ054及其缺失株Δcrp胆汁生长结果与BJ018、BJ018Δcrp一致。 这些结果提示嗜水气单胞菌CRP影响菌株对胆汁的耐受。   结论  CRP的存在影响嗜水气单胞菌在胆汁中的生长,可能在胆汁耐受调控中起到重要作用。
  • 图  1  嗜水气单胞相关菌株电泳结果

    注:M. Marker 2000; 2~10. 以内引物crpin扩增结果;11~21. 以外引物crp112upF/crp112dnL扩增结果;3、4、10、12、13、19. 野生株扩增结果,阳性对照;2、5~9、11、14~18. crp缺失株扩增结果;20. pRE112-crp扩增结果,阳性对照;21. 水,阴性对照

    Figure  1.  Agarose GEL electrophoresis of A. hydrophila strains

    图  2  0%或10%胆盐浓度LB中嗜水气单胞菌BJ018及相关菌株的生长曲线

    注:A、C. 无胆汁的LB培养基,B、D. 含10%胆汁的LB培养基

    Figure  2.  2 Growth determination of A. hydrophila strains BJ018 and related strains in 0% or 10% bile salts LB

    图  3  0%或10%胆盐浓度LB中嗜水气单胞菌BJ017、BJ054及其crp缺失株的生长曲线

    注:A、C. 无胆汁的LB培养基,B、D. 含10%胆汁的LB培养基

    Figure  3.  Growth determination of A. hydrophila strains BJ017, J054 and their crp-deleted strains in 0% or 10% bile salts LB

    表  1  嗜水气单胞菌缺失株及回补株构建相关引物

    Table  1.   Primers for deletion and complementation of A. hydrophila

     编号引物序列(5'~3')酶切位点产物(bp)
    crp112upF GCtctagaGCGATCGGCGATGACGAACTGA Xba I 565
    crp112upR GCACTGCCACCGGCAAGACCATAGTGGTGT
    crp112dnF GGTCTTGCCGGTGGCAGTGCGACAAGAACC Kpn I 553
    crp112dnL GGggtaccCCTGACGCGCCTTCTCCAGGAT
    luxSupF GCtctagaGCAGTGGGGAACCCCGATCCAGGTG Xba I 496
    luxSupR CAGCTCGTCAGTAAAACTGTCCAATAACGGCAT
    luxSdnF ACAGTTTTACTGACGAGCTGGCCCTGCCGGAAG Kpn I 491
    luxSdnR GGggtaccCCACATAGACCGCTTCAAGAGTTTCAAC
    crpF TGCtctagaTCAGCGGGTGCCGAACAC Xba I 639
    crpR GGAATTCcatatgGTCATTGGCAAACCGCAAAGC Nde I
    crpinF GCGGAGATCAGCTCCTGC 576
    crpinR TCCCACCCTGGAATGGTTCT
    注:下划线部分为引入的酶切位点和保护性碱基,粗体字母为反向互补序列
    下载: 导出CSV
  • [1] Fu JY, Kuipers F. Systems genetics approach reveals cross-talk between bile acids and intestinal microbes[J]. PLoS Genet, 2019, 15(8): e1008307. DOI:  10.1371/journal.pgen.1008307.
    [2] Goodrich JK, Davenport ER, Waters JL, et al. Cross-species comparisons of host genetic associations with the microbiome[J]. Science, 2016, 352(6285): 532–535. DOI:  10.1126/science.aad9379.
    [3] Kemis JH, Linke V, Barrett KL, et al. Genetic determinants of gut microbiota composition and bile acid profiles in mice[J]. PLoS Genet, 2019, 15(8): e1008073. DOI:  10.1371/journal.pgen.1008073.
    [4] Wahlström A, Sayin SI, Marschall HU, et al. Intestinal crosstalk between bile acids and microbiota and its impact on host metabolism[J]. Cell Metab, 2016, 24(1): 41–50. DOI:  10.1016/j.cmet.2016.05.005.
    [5] Sayin SI, Wahlström A, Felin J, et al. Gut microbiota regulates bile acid metabolism by reducing the levels of tauro-beta-muricholic acid, a naturally occurring FXR antagonist[J]. Cell Metab, 2013, 17(2): 225–235. DOI:  10.1016/j.cmet.2013.01.003.
    [6] Hu JP, Wang CK, Huang XY, et al. Gut microbiota-mediated secondary bile acids regulate dendritic cells to attenuate autoimmune uveitis through TGR5 signaling[J]. Cell Rep, 2021, 36(12): 109726. DOI:  10.1016/j.celrep.2021.109726.
    [7] Begley M, Gahan CGM, Hill C. The interaction between bacteria and bile[J]. FEMS Microbiol Rev, 2005, 29(4): 625–651. DOI:  10.1016/j.femsre.2004.09.003.
    [8] Urdaneta V, Casadesús J. Interactions between bacteria and bile salts in the gastrointestinal and hepatobiliary tracts[J]. Front Med, 2017, 4: 163. DOI:  10.3389/fmed.2017.00163.
    [9] Eade CR, Hung CC, Bullard B, et al. Bile acids function synergistically to repress invasion gene expression in Salmonella by destabilizing the invasion regulator HilD[J]. Infect Immun, 2016, 84(8): 2198–2208. DOI: 10.1128/IAI.00177−16.
    [10] Murakami K, Tenge VR, Karandikar UC, et al. Bile acids and ceramide overcome the entry restriction for GⅡ. 3 human norovirus replication in human intestinal enteroids[J]. Proc Natl Acad Sci USA, 2020, 117(3): 1700–1710. DOI:  10.1073/pnas.1910138117.
    [11] Sawabe T, Oliver JD. International committee on systematics of prokaryotes subcommittee on the taxonomy of Aeromonadaceae, Vibrionaceae and related organisms   Minutes of the meetings, 31 March 2016, Roscoff, France[J]. Int J Syst Evol Microbiol, 2017, 67(3): 759–760. DOI:  10.1099/ijsem.0.001675.
    [12] Stratev D, Odeyemi OA. Antimicrobial resistance of Aeromonas hydrophila isolated from different food sources: a mini-review[J]. J Infect Public Health, 2016, 9(5): 535–544. DOI:  10.1016/j.jiph.2015.10.006.
    [13] Ghenghesh KS, Rahouma A, Zorgani A, et al. Aeromonas in Arab countries: 1995−2014[J]. Comp Immunol Microbiol Infect Dis, 2015, 42: 8–14. DOI:  10.1016/j.cimid.2015.07.002.
    [14] Chao CM, Lai CC, Tang HJ, et al. Biliary tract infections caused by Aeromonas species[J]. Eur J Clin Microbiol Infect Dis, 2013, 32(2): 245–251. DOI: 10.1007/s10096−012−1736−1.
    [15] Cameron ADS, Redfield RJ. Non-canonical CRP sites control competence regulons in Escherichia coli and many other γ-proteobacteria[J]. Nucleic Acids Res, 2006, 34(20): 6001–6014. DOI:  10.1093/nar/gkl734.
    [16] Kidd SP, Pemberton JM. The identification of the transcriptional regulator CRP in Aeromonas hydrophila JMP636 and its involvement in amylase production and the 'acidic toxicity' effect[J]. J Appl Microbiol, 2002, 93(5): 787–793. DOI: 10.1046/j.1365−2672.2002.01750.x.
    [17] van Velkinburgh JC, Gunn JS. PhoP-PhoQ-regulated loci are required for enhanced bile resistance in Salmonella spp[J]. Infect Immun, 1999, 67(4): 1614–1622. DOI: 10.1128/IAI.67.4.1614−1622.1999.
    [18] Yu HB, Zhang YL, Lau YL, et al. Identification and characterization of putative virulence genes and gene clusters in Aeromonas hydrophila PPD134/91[J]. Appl Environ Microbiol, 2005, 71(8): 4469–4477. DOI: 10.1128/AEM.71.8.4469−4477.2005.
    [19] 南征, 于礼, 杨伟民, 等. 气单胞菌不同菌种胆汁耐受特征分析[J]. 疾病监测,2021,37(4):453–456. DOI: 10.3784/jbjc.202104140209.

    Nan Z, Yu L, Yang WM, et al. Bile tolerance characteristics of different Aeromonas species[J]. Dis Surveill, 2021, 37(4): 453–456. DOI:  10.3784/jbjc.202104140209.
    [20] Wang YD, Wang H, Liang WL, et al. Quorum sensing regulatory cascades control Vibrio fluvialis pathogenesis[J]. J Bacteriol, 2013, 195(16): 3583–3589. DOI: 10.1128/JB.00508−13.
    [21] Kozlova EV, Khajanchi BK, Popov VL, et al. Impact of QseBC system in c-di-GMP-dependent quorum sensing regulatory network in a clinical isolate SSU of Aeromonas hydrophila[J]. Microb Pathog, 2012, 53(3/4): 115–124. DOI:  10.1016/j.micpath.2012.05.008.
    [22] Shimizu K. Metabolic regulation of a bacterial cell system with emphasis on Escherichia coli metabolism[J]. ISRN Biochem, 2013, 2013: 645983. DOI:  10.1155/2013/645983.
    [23] Chen BL, Liang WL, Wu R, et al. Phenotype microarray screening of carbon sources used by Vibrio cholerae identifies genes regulated by the cAMP receptor protein[J]. Can J Microbiol, 2013, 59(7): 472–478. DOI: 10.1139/cjm−2013−0084.
    [24] Liang WL, Silva AJ, Benitez JA. The cyclic AMP receptor protein modulates colonial morphology in Vibrio cholerae[J]. Appl Environ Microbiol, 2007, 73(22): 7482–7487. DOI: 10.1128/AEM.01564−07.
    [25] Chu CY, Wang SY, Chen ZW, et al. Heterologous protection in pigs induced by a plasmid-cured and crp gene-deleted Salmonella choleraesuis live vaccine[J]. Vaccine, 2007, 25(41): 7031–7040. DOI:  10.1016/j.vaccine.2007.07.063.
    [26] Le VVH, Biggs PJ, Wheeler D, et al. Novel mechanisms of TolC-independent decreased bile-salt susceptibility in Escherichia coli[J]. FEMS Microbiol Lett, 2020, 367(10): fnaa083. DOI:  10.1093/femsle/fnaa083.
    [27] Villarreal JM, Hernández-Lucas I, Gil F, et al. cAMP receptor protein (CRP) positively regulates the yihU-yshA operon in Salmonella enterica serovar Typhi[J]. Microbiology (Reading) , 2011, 157(Pt 3): 636–647. DOI: 10.1099/mic.0.046045−0.
    [28] Chen ZW, Hsuan SL, Liao JW, et al. Mutations in the Salmonella enterica serovar choleraesuis cAMP-receptor protein gene lead to functional defects in the SPI-1 type III secretion system[J]. Vet Res, 2010, 41(1): 5. DOI:  10.1051/vetres/2009053.
    [29] Zhou YY, Yu L, Nan Z, et al. Taxonomy, virulence genes and antimicrobial resistance of Aeromonas isolated from extra-intestinal and intestinal infections[J]. BMC Infect Dis, 2019, 19(1): 158. DOI: 10.1186/s12879−019−3766−0.
  • 加载中
图(3) / 表(1)
计量
  • 文章访问数:  185
  • HTML全文浏览量:  76
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-08
  • 网络出版日期:  2022-11-09
  • 刊出日期:  2022-12-01

目录

    /

    返回文章
    返回

    在线交流

    防诈骗公告

    大家好:近期有不法分子以本刊编辑身份添加作者微信,请务必提高警惕!本刊关于稿件的一切事项通知均采用编辑部唯一邮箱(jbjc@icdc.cn)和座机(010-58900732)联系作者,且在录用稿件后仅收取版面费,无其他任何名目费用(如审稿费和加急费等),非编辑部邮箱发送的本刊收费用通知等均为诈骗,不要随意汇入款项!如有可疑及时致电编辑部核实确认!