Epidemiological characteristics of local COVID-19 epidemic in Zhejiang in spring of 2022
-
摘要:
目的 分析自2022年3月以来浙江省本土新型冠状病毒感染(新冠)聚集性疫情流行病学特征。 方法 收集2022 年3月3日至5月8日浙江省本土新冠聚集性疫情的流行病学调查资料,采用描述性流行病学方法进行分析。 结果 262起疫情波及11个市的71个县(市、区),累计报告确诊病例668例,无症状感染者866例。 局部空间自相关分析显示,嘉善县、平湖市、海宁市、临平区、余杭区、拱墅区、上城区和婺城区存在热点聚集性。 本次疫情由上海市输入并导致关联疫情占72.90%;50例以上规模疫情持续时间为7~15 d,10 d左右控制动态基本再生数(Rt)<1。 结论 本轮疫情主要发生在嘉兴市和杭州市,大部分是外省输入病例引起的关联疫情;疫情R t控制在1以下的时间越早,规模越小,疫情持续时间越短。 Abstract:Objective To analyze the epidemiological characteristics of local COVID-19 epidemic in Zhejiang province in spring of 2022. Methods The epidemiological data of local COVID-19 epidemic in Zhejiang from March 3 to May 8, 2022 were collected, and descriptive epidemiological method were used for analysis. Results A total of 262 clusters of COVID-19 cases were reported in this epidemic in 71 counties (districts) in 11 prefectures (municipality) in Zhejiang, a total of 668 symptomatic cases and 866 asymptomatic cases were diagnosed. Local spatial autocorrelation analysis showed the clustering hot spots in Jiashan county, Pinghu and Haining cities, Linping, Yuhang, Gongshu, Shangcheng and Wucheng districts. Up to 72.90% of COVID-19 case clusters were caused by the imported cases from Shanghai; the duration of the virus spread in clusters with more than 50 cases ranged from 7 to 15 d, and the dynamic basic reproduction number (Rt) was kept below 1 for about 10 d. Conclusions This round of epidemic mainly occurred in Jiaxing and Hangzhou due to local SARS-CoV-2 transmission caused by imported cases from other provinces; the earlier the Rt declined below 1, the smaller the epidemic scale and the short the epidemic duration. -
表 1 不同规模疫情病毒来源分析
Table 1. Sources of COVID-19 epidemics with different scales
疫情规模
(例)上海输入
[起(%)]其他省输入
[起(%)]隔离点、方舱外溢
[起(%)]疑似物品传播
[起(%)]机场接触
[起(%)]来源不明
[起(%)]总计(起) ≤ 5 180(76.28) 26(11.02) 14(5.93) 6(2.54) 1(0.42) 9(3.81) 236 6~ 5(62.50) 0(0.00) 0(0.00) 1(12.50) 0(0.00) 2(25.00) 8 11~ 5(45.45) 0(0.00) 1(9.10) 0(0.00) 0(0.00) 5(45.45) 11 ≥ 50 1(14.29) 0(0.00) 0(0.00) 1(14.29) 0(0.00) 5(71.42) 7 合计 191(72.90) 26(9.92) 15(5.73) 8(3.05) 1(0.38) 21(8.02) 262 表 2 50例以上规模疫情特征汇总
Table 2. Characteristics of COVID-19 epidemics with more than 50 cases
序号 疫情简称 指示病例
发现方式病例数
(例)持续时间
(d)控制Rt<1
的时间(d)1 余杭物流园疫情 自主就医 61 8 7 2 衢江疫情 自主就医 129 11 10 3 海宁0402 自主就医 179 15 11 4 婺城0415 社区筛查 189 13 12 5 拱墅0419 自主就医 180 13 9 6 天台0428 社区筛查 51 7 7 7 嘉善0503 社区筛查 72 9 8 注:Rt. 动态基本再生数 -
[1] WHO. WHO coronavirus (COVID-19) dashboard[EB/OL]. (2022-05-20)[2022-05-22]. https://covid19.who.int/. [2] 中华人民共和国国家卫生健康委员会. 疫情通报[EB/OL]. (2022-05-22)[2022-05-22]. http://www.nhc.gov.cn/xcs/yqtb/list_gzbd.shtml.NHC. Epidemic notification[EB/OL]. (2022-05-22)[2022-05-22]. http://www.nhc.gov.cn/xcs/yqtb/list_gzbd.shtml. [3] 中国国家卫生健康委员会. 新型冠状病毒肺炎诊疗方案(试行第九版)[J]. 国际流行病学传染病学杂志,2022,49(2):73–80. DOI:10.3760/cma.j.cn331340−20220325−00065.NHC. Diagnosis and treatment plan for COVID-19 (trial version 9)[J]. Int J Epidemiol Infect Dis, 2022, 49(2): 73–80. DOI: 10.3760/cma.j.cn331340−20220325−00065. [4] Gale S, Olsson G. Philosophy in geography[M]. Dordrecht: Springer, 1979. [5] 鲜林峰, 林剑生, 俞世冲, 等. 上海市2022年春季新型冠状病毒感染暴发的流行病学特征分析[J]. 上海预防医学,2022,34(4):294–299. DOI: 10.19428/j.cnki.sjpm.2022.22058.Xian LF, Lin JS, Yu SC, et al. Epidemiological characteristics of SARS-CoV-2 infection outbreak in Shanghai in the Spring of 2022[J]. Shanghai J Prev Med, 2022, 34(4): 294–299. DOI: 10.19428/j.cnki.sjpm.2022.22058. [6] WHO. Classification of Omicron (B. 1.1. 529): SARS-CoV-2 Variant of Concern[EB/OL]. (2021-12-26)[2022-05-21].https://www.who.int/news/item/26-11-2021-classification-of-omicron-(b.1.1.529)-sars-cov-2-variant-of-concern. [7] 黄云, 李依红, 谢仕兰, 等. 新型冠状病毒Omicron变异株研究进展[J]. 中华流行病学杂志,2022,43(5):655–662. DOI:10.3760/cma.j.cn112338−20220121−00061.Huang Y, Li YH, Xie SL, et al. Progress in research of 2019-nCoV Omicron variant[J]. Chin J Epidemiol, 2022, 43(5): 655–662. DOI: 10.3760/cma.j.cn112338−20220121−00061. [8] 吴俣, 刘珏, 刘民, 等. 新型冠状病毒Omicron变异株的流行病学特征及其科学防控建议[J]. 中华疾病控制杂志,2022,26(5):497–501. DOI: 10.16462/j.cnki.zhjbkz.2022.05.001.Wu Y, Liu J, Liu M, et al. Epidemiologic features and scientific prevention and control advice of SARS-CoV-2 Omicron variant[J]. Chin J Dis Control Prev, 2022, 26(5): 497–501. DOI: 10.16462/j.cnki.zhjbkz.2022.05.001. [9] Chen YY, Huang XB, Xiao Y, et al. Spatial analysis of schistosomiasis in Hubei province, China: a GIS-based analysis of schistosomiasis from 2009 to 2013[J]. PLoS ONE, 2015, 10(4): e0118362. DOI: 10.1371/journal.pone.0118362. [10] 郝凤霞, 张诗葭. 长三角城市群交通基础设施、经济联系和集聚——基于空间视角的分析[J]. 经济问题探索, 2021(3): 80–91.Hao FX, Zhang SJ. Transportation infrastructure, economic connection and aggregation of Yangtze River Delta——a analysis based on spatial perspective[J]. Inq Econ Iss, 2021(3): 80–91. [11] 钮心毅. 2020长三角城市跨城通勤年度报告[M]. 天津:同济大学建筑与城市规划学院, 2020.Niu XY. 2020 annual report on cross-city commuting in Yangtze River Delta cities[M]. CAUP Tongji University, 2020. [12] 吴文娟, 张祎博, 陈尔真. 新型冠状病毒肺炎大型方舱医院感染预防控制风险管理探索[J]. 中华预防医学杂志,2022,56(8):1050–1054. DOI:10.3760/cma.j.cn112150−20220430−00434.Wu WJ, Zhang YB, Chen EJ. Exploration on risk management of infection prevention and control in COVID-19 makeshift hospitals[J]. Chin J Prev Med, 2022, 56(8): 1050–1054. DOI: 10.3760/cma.j.cn112150−20220430−00434. [13] Ma HL, Zhang JQ, Wang J, et al. COVID-19 outbreak caused by contaminated packaging of imported cold-chain products - Liaoning province, China, July 2020[J]. China CDC Wkly, 2021, 3(21): 441–447. DOI: 10.46234/ccdcw2021.114. [14] Garrett N, Tapley A, Andriesen J, et al. High asymptomatic carriage with the omicron variant in South Africa[J]. Clin Infect Dis, 2022, 75(1): e289–292. DOI: 10.1093/cid/ciac237. [15] 陈芳, 吴家兵, 姜静静, 等. 安徽省新型冠状病毒肺炎聚集性疫情流行特征与防控措施分析[J]. 中国公共卫生,2020,36(4):469–472. DOI: 10.11847/zgggws1128674.Chen F, Wu JB, Jiang JJ, et al. Epidemiological characteristics of clusters of COVID-19 in Anhui province[J]. Chin J Public Health, 2020, 36(4): 469–472. DOI: 10.11847/zgggws1128674. [16] 黄丽红, 沈思鹏, 余平, 等. 基于动态基本再生数的新型冠状病毒肺炎疫情防控现状评估[J]. 中华流行病学杂志,2020,41(4):466–469. DOI:10.3760/cma.j.cn112338−20200209−00080.Huang LH, Shen SP, Yu P, et al. Dynamic basic reproduction number based evaluation for current prevention and control of COVID-19 outbreak in China[J]. Chin J Epidemiol, 2020, 41(4): 466–469. DOI: 10.3760/cma.j.cn112338−20200209−00080. [17] 崔玉美, 陈姗姗, 傅新楚. 几类传染病模型中基本再生数的计算[J]. 复杂系统与复杂性科学,2017,14(4):14–31. DOI:10.13306/j.1672−3813.2017.04.002.Cui YM, Chen SS, Fu XC. The thresholds of some epidemic models[J]. Complex Syst Complex Sci, 2017, 14(4): 14–31. DOI: 10.13306/j.1672−3813.2017.04.002. [18] 李承倬, 武文韬, 潘振宇, 等. 基于SIR模型和基本再生数的浙江省新型冠状病毒肺炎防控效果分析[J]. 浙江医学,2020,42(4):311–314. DOI:10.12056/j.issn.1006−2785.2020.42.4.2019−388.Li CZ, Wu WT, Pan ZY, et al. Prevention and control of coronavirus disease 2019 in Zhejiang province based on SIR model and R0[J]. Zhejiang Med J, 2020, 42(4): 311–314. DOI: 10.12056/j.issn.1006−2785.2020.42.4.2019−388. -