Evaluation of effectiveness of COVID-19 prevention and control in a closed-loop management manner during Beijing 2022 Winter Olympics and Paralympics Games
-
摘要:
目的 定量评估北京冬奥会和冬残奥会(北京冬残奥会)闭环管理对新冠疫情控制的效果。 方法 收集2022年1月4日至3月13日的北京冬残奥会新型冠状病毒肺炎防疫报告数据(机场入境人数、核酸检测等信息),利用群体传播动力学模型模拟非闭环(常态化)管理每日新增感染人数、每日检出率、累计检出率,与实际数据比较分析,评估闭环管理防控效果。 结果 模型结果提示,如果采取常态化管理,北京冬残奥会期间每日新增感染人数于2月12日达到峰值(120人),较实际峰值推迟了10 d且增加了94人;相比于常态化管理,闭环管理可避免95.24%的感染者(3 763 比 179);常态化管理累计检出率为闭环管理21.02倍(0.15% 比 0.07‰)。 此期间,实际机场入境运动员和随队官员与其他利益相关方累计检出率相近(1.68% 比 1.76%);进入闭环内,两类人群的累计检出率均下降(0.49‰ 比 0.05‰),其中运动员和随队官员的每日检出率远高于其他利益相关方(最高每日检出率:3.15‰ 比0.22‰)。 结论 北京冬残奥会闭环管理能早期发现感染者,有效降低感染人数,为未来大型体育赛事疫情防控策略制定提供借鉴。 Abstract:Objective To quantitatively evaluate the effectiveness of closed-loop management in the control of COVID-19 during Beijing Winter Olympics and Paralympics Games in 2022. Methods The information about COVID-19 prevention and control during Beijing Winter Olympics and Paralympics Games from January 4 to March 13, 2022, such as the airport arrivals and confirmed positive cases, were collected. According to the non-closed-loop management (regular epidemic prevention and control measure), a population transmission dynamic model was built to simulate daily new infections, daily detection rate and cumulative detection rate, and the results were compared with the actual data to evaluate the effectiveness of the closed-loop management. Results The results of the model suggested that if regular management were adopted, the daily number of new infections during Beijing Winter Olympics and Paralympic would reach the peak on February 12 (120), 10 days later than the actual peak and an increase of 94 cases. Compared with regular management, closed-loop management might prevent 95.24% of infections (3,763 vs. 179); The cumulative detection rate of regular management was 21.02 times higher than that of closed-loop management (0.15% vs. 0.07‰). During this period, the cumulative detection rates of actual airport inbound athletes, team officials and other stakeholders were similar (1.68% vs. 1.76%). In the closed loop, the cumulative detection rate of both groups decreased (0.49‰ vs. 0.05‰), and the daily detection rate of athletes and team officials was much higher than that of other stakeholders (the highest daily detection rate: 3.15‰ vs. 0.22‰). Conclusion The closed-loop management during Beijing Winter Olympics and Paralympics Games could detect the infections early and effectively reduce the number of infections, providing a reference for developing epidemic prevention and control strategies for future large-scale sports events. -
表 1 闭环管理与常态化管理政策与措施的比较
Table 1. Comparison of closed-loop management and regular management policies and measures
表 2 传播动力学模型相关参数及取值
Table 2. Transmissive dynamic model related parameters and values
参数 定义 取值 $ \alpha $ 密接管理程度:感染者的密切接触者中被发现者占所有密切接触者的比例。 0.90 q 密接发现速率:感染者的密切接触者被发现并隔离所需时间(以天为单位)的倒数。 1/1.50 $ {\beta }_{0} $ 接触传播率:与感染者每次接触的传播概率 0.17[11–12] c 每日人均接触人数:感染者的密切接触者人数 14.50[13] $ \sigma $ 未发现感染者到发现感染者的转移速率 1/2.90[1] $ \lambda $ 隔离速率 1/10[9] $ {P}_{NAT} $ 隔离期后依旧不能被发现的概率 0.13[14] $ {\lambda }_{1} $ 核酸检测速率:两次核酸检测间隔时间(以天为单位)的倒数。 1/3 n 核酸检测准确度 0.92[15] $ \delta $ 一般状态与密接状态中被发现的感染者住院隔离时间(以天为单位)的倒数。 1/2 $ {\delta }_{q} $ 隔离状态中被发现的感染者住院隔离时间(以天为单位)的倒数。 1 表 3 传播动力学模型的单因素敏感性分析结果
Table 3. Results of univariate sensitivity analysis of transmission dynamic model
参数 取值范围 最大每日新增感染人数(例) 到达峰值时间(d) 累计感染人数(例) 累计检出率(%) $ {\beta }_{0} $ 0.13~0.21a 58~339 16~29 1 340~9 101 0.05~0.36 $ \sigma $ 1/3.63~1/2.20a 96~169 21~22 3 071~5 126 0.12~0.20 c 10.88~18.13a 58~308 16~29 1 371~8 058 0.05~0.32 $ {\lambda }_{1} $ 1/1~1/5 42~192 15~29 811~5 932 0.03~0.23 注:a. 保持其他影响因素不变,基于初始值上下变化25%作为取值范围并进行敏感性分析 -
[1] Wang XC, Cai YR, Zhang B, et al. Cost-effectiveness analysis on COVID-19 surveillance strategy of large-scale sports competition[J]. Infect Dis Poverty, 2022, 11(1): 32. DOI: 10.1186/s40249−022−00955−3. [2] The Tokyo Organising Committee for the Olympic and Paralympic Games 2020. The playbook: athletes and officials[R]. Tokyo: TOCOG, 2021. [3] Shen Y, Huo D, Yu T, et al. Bubble strategy-a practical solution to return to regular life in the intertwined era of vaccine rollouts and virus mutation[J]. China CDC Wkly, 2022, 4(4): 71–73. DOI: 10.46234/ccdcw2022.014. [4] 陕西日报. 十四运会实现“零感染”目标[EB/OL]. (2021-09-30)[2022-07-06]. http://news.cnwest.com/shangluo/a/2021/09/29/19991948.html.Shaanxi Daily. The 14th national games of the people's republic of China achieved the goal of “zero infection”[EB/OL]. (2021−09−30)[2022-07-06]. http://news.cnwest.com/shangluo/a/2021/09/29/19991948.html. [5] The Beijing Organising Committee for the Olympic and Paralympic Games 2022. The playbook athletes and officials[R]. Beijing: BOCWOG, 2022. [6] Su ZH, McDonnell D, Cheshmehzangi A, et al. How to join and stay in the Olympic COVID-free “bubble”?[J]. Brain Behav Immun Health, 2022, 20: 100424. DOI: 10.1016/j.bbih.2022.100424. [7] 梁万年, 刘民, 刘珏, 等. 我国新型冠状病毒肺炎疫情防控的“动态清零”策略[J]. 中华医学杂志,2022,102(4):239–242. DOI:10.3760/cma.j.cn112137−20211205−02710.Liang WN, Liu M, Liu J, et al. The dynamic COVID-zero strategy on prevention and control of COVID-19 in China[J]. Natl Med J China, 2022, 102(4): 239–242. DOI: 10.3760/cma.j.cn112137−20211205−02710. [8] 国旅运通全球商务旅行. 中国各省市旅行防疫政策[EB/OL]. (2022-07-08)[2022-07-11]. https://www.citsgbt.com/ftp/citsgbt/ChinaPolicyUpdate/chinapolicyforinboundtravelers.pdf.Global Business Travel. The epidemic control measures of provinces/cities in China for travelers[EB/OL]. (2022-07-08)[2022-07-11]. https://www.citsgbt.com/ftp/citsgbt/ChinaPolicyUpdate/chinapolicyforinboundtravelers.pdf. [9] 国务院应对新型冠状病毒肺炎疫情联防联控机制综合组. 关于印发新型冠状病毒肺炎防控方案(第九版)的通知[EB/OL]. (2022-06-28)[2022-07-06]. http://www.gov.cn/xinwen/2022-06/28/content_5698168.htm.Joint Prevention and Control Mechanism of the State Council. Protocols for prevention and control of COVID-19 (ninth edition)[EB/OL]. (2022-06-28)[2022-07-06]. http://www.gov.cn/xinwen/2022-06/28/content_5698168.htm. [10] 北京市统计局, 国家统计局北京调查总队. 北京市2021年国民经济和社会发展统计公报[N]. 北京日报, 2022-03-02(006). DOI:10.28033/n.cnki.nbjrb.2022.001259.Beijing Municipal Bureau of Statistics, National Bureau of Statistics Beijing Survey Team. Beijing 2021 national economic and social development statistical bulletin[N]. Beijing Daily, 2022-03-02(006). DOI:10.28033/n.cnki.nbjrb.2022.001259. [11] Vazquez A, Staebler M, Khanin A, et al. Estimating the super-spreading rate at workplaces using bluetooth technology[J]. medRxiv. [12] Nishiura H, Ito K, Anzai A, et al. Relative reproduction number of SARS-CoV-2 Omicron (B. 1.1. 529) compared with delta variant in south Africa[J]. J Clin Med, 2022, 11(1): 30. DOI: 10.3390/jcm11010030. [13] Zhang JJ, Litvinova M, Liang YX, et al. Changes in contact patterns shape the dynamics of the COVID-19 outbreak in China[J]. Science, 2020, 368(6498): 1481–1486. DOI: 10.1126/science.abb8001. [14] 李志丽, 李昱, 陈秋兰, 等. 我国输入性新型冠状病毒感染者核酸检测阳性的时间分布特征[J]. 中华流行病学杂志,2022,43(2):183–188. DOI:10.3760/cma.j.cn112338−20211108−00858.Li ZL, Li Y, Chen QL, et al. Time distribution of positive nucleic acid detection in imported cases infected with SARS-CoV-2 in China[J]. Chin J Epidemiol, 2022, 43(2): 183–188. DOI: 10.3760/cma.j.cn112338−20211108−00858. [15] Butler-Laporte G, Lawandi A, Schiller I, et al. Comparison of saliva and nasopharyngeal swab nucleic acid amplification testing for detection of SARS-CoV-2: A systematic review and meta-analysis[J]. JAMA Intern Med, 2021, 181(3): 353–360. DOI: 10.1001/jamainternmed.2020.8876. [16] Zhang Y, Ai JW, Bao J, et al. Lessons learned from the COVID-19 control strategy of the XXXII Tokyo Summer Olympics and the XXIV Beijing Winter Olympics[J]. Emerg Microbes Infect, 2022, 11(1): 1711–1716. DOI: 10.1080/22221751.2022.2090859. [17] Fischer K, Reade JJ, Schmal WB. The long shadow of an infection: COVID-19 and performance at work[R]. Dusseldorf: Dusseldorf Institute for Competition Economics, 2021. [18] Wagemans J, Catteeuw P, Vandenhouten J, et al. The impact of COVID-19 on physical performance and mental health-a retrospective case series of Belgian male professional football players[J]. Front Sports Act Living, 2021, 3: 803130. DOI: 10.3389/fspor.2021.803130. [19] Liu Y, Rocklöv J. The effective reproductive number of the Omicron variant of SARS-CoV-2 is several times relative to Delta[J]. J Travel Med, 2022, 29(3): taac037. DOI: 10.1093/jtm/taac037. [20] Our World in Data. Coronavirus (COVID-19) cases[EB/OL]. (2022-09-12)[2022-09-11]. https://ourworldindata.org/covid-cases. [21] 中国日报网. 新冠肺炎疫情防控两类策略和措施比较研究[EB/OL]. (2020-03-19)[2022-07-06]. https://cn.chinadaily.com.cn/a/202003/19/WS5e731e02a3107bb6b57a7913.html.Chinadaily. A comparative study on the two types of strategies and measures for the prevention and control of COVID-19[EB/OL]. (2020-03-19)[2022-07-06]. https://cn.chinadaily.com.cn/a/202003/19/WS5e731e02a3107bb6b57a7913.html. -