Surveillance for avian influenza virus in external environment of live poultry markets in Shapingba district of Chongqing, 2017−2021
-
摘要:
目的 了解2017—2021年重庆市沙坪坝区活禽市场外环境中禽流感病毒的分布特点。 方法 在沙坪坝区21个活禽市场随机采集6类环境样本,包括粪便(肛拭)、笼具表面擦拭标本、案板表面擦拭标本、刀具表面擦拭标本、盛装容器面擦拭标本和洗肉水,共1 200份,采用实时聚合酶链式反应(RT-PCR)检测通用甲型流感病毒(Flu A),阳性样本进一步进行H5、H7、H9、N9亚型检测,采用SAS 8.2软件进行统计分析。 结果 样本中Flu A阳性率达68.50%,H5、H7、H9、N9亚型及未分型总阳性率分别为26.33%、0.17%、45.50%、0.00% 及17.17%,差异有统计学意义(χ2=351.563,P<0.001)。 存在H5+H9(19.83%)、H9+N9 (0.67%)和H5+H9+N9(0.67%)混合型。 不同年份、不同季节Flu A阳性率差异有统计学意义(χ2=296.199、 35.350,均P<0.001),Flu A阳性率高峰为第一季度(79.17%)和第二季度(76.67%)。 不同地区活禽市场外环境的Flu A核酸阳性率差异无统计学意义(χ2=11.062,P=0.087);不同环境类型样本中,案板表面擦拭样本Flu A阳性率为72.00%,其次为刀具表面擦拭样本(71.00%),6类环境样本Flu A核酸阳性率差异无统计学意义(χ2= 6.813,P=0.235)。 结论 重庆市沙坪坝区活禽市场环境普遍存在禽流感病毒污染,H9亚型是主要的病原体,混合型占一定比例,污染高峰为每年的第一季度和第二季度。 应重视H9N9和H5H9等新的重配体和变体出现的情况,加强对活禽市场环境监测,切实做好宰杀摆放禽肉的案板和刀具等区域的消毒清洁工作。 Abstract:Objective To analyze the contamination of avian influenza virus in the external environment of live poultry markets in Shapingba district of Chongqing from 2017 to 2021. Methods A total of 1200 environmental samples of 6 kinds, including stool samples (anal swabs) , cage surface swabs, chopping board surface swabs, knife surface swabs, container and washing water samples, were randomly collected from 21 live poultry markets in Shapingba for the detection of influenza A virus by real-time polymerase chain reaction (RT-PCR). Positive samples were further tested for H5, H7, H9 and N9 subtypes by sequencing. Statistical analysis was conducted by using SAS 8.2. Results The overall positive rate of influenza A virus was 68.50%, and the positive rates of subtype H5, H7, H9, N9 and unspecific subtype were 26.33%, 0.17%, 45.50%, 0.00% and 17.17%, respectively, the differences were significant (χ2=315.563, P<0.001). The co-detection rates of H5+H9, H7+H9 and H5+H9+N9 were19.83%, 0.67% and 0.67% respectively. The differences in annual positive rate of influenza A virus were significant (χ2=296.199, P<0.001). The differences in seasonal positive rate of influenza A virus were significant (χ2=35.350, P<0.001). The positive rate of influenza A virus was highest in the first quarter (79.17%), followed by the second quarter (76.76%). There were no significant differences in the positive rate of nucleic acid of influenza A virus among the samples collected from different markets (χ2=11.062, P=0.087). Among the different types of samples, the positive rate in swabs of chopping board surfaces was72.00%, and the positive rate in swabs of knife surfaces was 71.00%. There were no significant differences in the positive rate of influenza A virus nucleic acid among the 6 types of samples (χ2=6.813, P=0.235). Conclusion Avian influenza virus contamination was common in the external environment of live poultry markets in Shapingba, especially in the first and second quarters of the year, the predominant subtype was H9. Co-infection of subtypes accounted for a certain proportion. Close attention should be paid to the emergence of novel reassortants and variants of avian influenza virus, such as H9N9 and H5H9, etc. It is necessary to strengthen the supervision and management of live poultry markets and conduct regular disinfection in the markets. -
Key words:
- Avian influenza virus /
- Live poultry market /
- External environment /
- Surveillance
-
表 1 2017-2021年重庆市沙坪坝区涉禽外环境样本甲型流感病毒亚型分布
Table 1. Subtype distribution of influenza A virus detected in samples from live poultry-related environment in Shapingba, Chongqing, 2017−2021
年份 样本
份数甲型流
感病毒阳性样本不同亚型分布 H5 H9 未分型 H5+H9 H7+H9 H9+N9 H5+H9+N9 2017 120 98(81.67) 2(1.67) 40(33.33) 38(31.67) 16(13.33) 2(1.67) 0(0.00) 0(0.00) 2018 288 274(95.14) 20(6.94) 92(31.94) 12(4.17) 146(50.69) 0(0.00) 0(0.00) 4(1.39) 2019 288 238(82.64) 26(9.03) 100(34.72) 36(12.50) 64(22.22) 0(0.00) 8(2.78) 4(1.39) 2020 216 98(45.37) 4(1.85) 38(17.59) 46(21.30) 10(4.63) 0(0.00) 0(0.00) 0(0.00) 2021 288 114(39.58) 18(6.25) 20(6.94) 74(25.69) 2(0.69) 0(0.00) 0(0.00) 0(0.00) 合计 1 200 822(68.50) 70(5.83) 290(24.17) 206(17.17) 238(19.83) 2(0.17) 8(0.67) 8(0.67) 注:括号外数据为阳性样本数(份),括号内数据为阳性率(%) 表 2 2017-2021年重庆市沙坪坝区不同季度涉禽外环境样本甲型流感病毒亚型分布
Table 2. Season specific subtype distribution of influenza A virus detected in samples from poultry-related environment in Shapingba, Chongqing, 2017−2021
季度 样本数(份) 甲型流感病毒 H5 H9 未分型 H5+H9 H7+H9 H9+N9 H5+H9+N9 第一 240 190(79.17) 22(9.17) 60(25.00) 24(10.00) 68(28.33) 0(0.00) 8(3.33) 8(3.33) 第二 240 184(76.67) 12(5.00) 58(24.17) 54(22.50) 60(25.00) 0(0.00) 0(0.00) 0(0.00) 第三 336 200(59.52) 10(2.98) 74(22.02) 86(25.86) 28(8.33) 2(0.60) 0(0.00) 0(0.00) 第四 384 248(64.58) 26(6.77) 98(25.52) 42(10.94) 82(21.35) 0(0.00) 0(0.00) 0(0.00) 合计 1 200 822(68.50) 70(5.83) 290(2.17) 206(17.17) 238(19.83) 2(0.17) 8(1.67) 8(1.67) 注:括号外数据为阳性样本数(份),括号内数据为阳性率(%) 表 3 2017-2021年重庆市沙坪坝区不同地区涉禽外环境样本甲型流感病毒亚型分布
Table 3. Area specific subtype distribution of avian influenza A virus detected in samples from poultry-related environment in Shapingba, Chongqing, 2017−2021
地区
(镇/街道)样本
份数甲型流感
病毒H9+N9 H5+H9+N9 磁器口 240 166(69.17) 0(0.00) 0(0.00) 青木关 48 24(50.00) 0(0.00) 0(0.00) 沙坪坝 240 160(66.67) 0(0.00) 4(1.67) 覃家岗 108 82(75.93) 0(0.00) 0(0.00) 天星桥 84 58(69.05) 0(0.00) 0(0.00) 小龙坎 240 164(68.33) 8(3.33) 4(1.67) 渝碚路 240 168(70.00) 0(0.00) 0(0.00) 合计 1 200 822(68.50) 8(0.67) 8(0.67) 注:括号外数据为阳性样本数(份),括号内数据为阳性率(%) 表 4 2017-2021年重庆市沙坪坝区不同类型涉禽外环境样本甲型流感病毒亚型分布
Table 4. Sample type specific subtype distribution of influenza A virus detected in poultry-related environment in Shapingba, Chongqing, 2017−2021
样本类型 样本
份数甲型流感病毒 H9+N9 H5+H9+N9 案板表面擦拭 200 144(72.00) 0(0.00) 2(1.00) 刀具表面擦拭 200 142(71.00) 2(1.00) 2(1.00) 肛拭子 200 138(69.00) 2(1.00) 0(0.00) 笼具表面擦拭 200 142(71.00) 0(0.00) 2(1.00) 盛装容器表面擦拭 200 132(66.00) 2(1.00) 2(1.00) 洗肉水 200 124(62.00) 2(1.00) 0(0.00) 合计 1 200 822(68.50) 8(0.67) 8(0.67) 注:括号外数据为阳性样本数(份),括号内数据为阳性率(%) -
[1] Zhang JH, Ye HJ, Li HN, et al. Evolution and antigenic drift of influenza A (H7N9) viruses, China, 2017–2019[J]. Emerg Infect Dis, 2020, 26(8): 1906–1911. DOI: 10.3201/eid2608.200244. [2] Bi YH, Li J, Li SQ, et al. Dominant subtype switch in avian influenza viruses during 2016–2019 in China[J]. Nat Commun, 2020, 11(1): 5909. DOI: 10.1038/s41467−020−19671−3. [3] 黄胜, 孙虹. WHO确认的人感染H5N1亚型禽流感病毒病例的流行病学分析报告[J]. 中国国境卫生检疫杂志,2006,29(4):251–254. DOI:10.3969/j.issn.1004−9770.2006.04.023.Huang S, Sun H. Epidemiological report on human H5N1 avian influenza confirmed by WHO[J]. Chin J Front Health Quarant, 2006, 29(4): 251–254. DOI: 10.3969/j.issn.1004−9770.2006.04.023. [4] 龚涛, 杨连建. 重庆市沙坪坝区首例人感染H7N9流感的流行病学调查与分析[J]. 现代预防医学,2018,45(7):1312–1314,1327.Gong T, Yang LJ. Epidemiological investigation and analysis of the first human infection with avian influenza A(H7N9) virus, Shapingba[J]. Mod Prev Med, 2018, 45(7): 1312–1314,1327. [5] Zhu WF, Zhou JF, Li Z, et al. Biological characterisation of the emerged highly pathogenic avian influenza (HPAI) A(H7N9) viruses in humans, in mainland China, 2016 to 2017[J]. Euro Surveill, 2017, 22(19): 30533. DOI: 10.2807/1560−7917.ES.2017.22.19.30533. [6] Pu J, Yin YB, Liu JY, et al. Reassortment with dominant chicken H9N2 influenza virus contributed to the fifth H7N9 virus human epidemic[J]. J Virol, 2021, 95(11): e01578–20. DOI: 10.1128/JVI.01578−20. [7] Liu W, Fan H, Raghwani J, et al. Occurrence and reassortment of avian influenza A (H7N9) viruses derived from coinfected birds in China[J]. J Virol, 2014, 88(22): 13344–13351. DOI: 10.1128/JVI.01777−14. [8] Wu DL, Zou SM, Bai T, et al. Poultry farms as a source of avian influenza A (H7N9) virus reassortment and human infection[J]. Sci Rep, 2015, 5: 7630. DOI: 10.1038/srep07630. [9] Shi JZ, Deng GH, Ma SJ, et al. Rapid evolution of H7N9 highly pathogenic viruses that emerged in China in 2017[J]. Cell Host Microbe, 2018, 24(4): 558–568.e7. DOI: 10.1016/j.chom.2018.08.006. [10] Ge EJ, Zhang RJ, Li DK, et al. Estimating risks of inapparent avian exposure for human infection: Avian influenza virus A (H7N9) in Zhejiang province, China[J]. Sci Rep, 2017, 7: 40016. DOI: 10.1038/srep40016. [11] European Food Safety Authority, European Centre for Disease Prevention and Control, European Union Reference Laboratory for Avian influenza, et al. Avian influenza overview October 2016-August 2017[J]. EFSA J, 2017, 15(10): e05018. DOI: 10.2903/j.efsa.2017.5018. [12] 中国国家流感中心.职业暴露人群血清学和环境高致病性禽流感监测方案(2011年版)[EB/OL].(2011-08-02)[2022-04-01]. https://ivdc.chinacdc.cn/cnic/zyzx/jcfa/201605/t20160520_129701.htm.China National Influenza Center. Serological and Environmental Highly pathogenic avian influenza Surveillance Programme for Occupational Exposed Populations (2011).[EB/OL].(2011−08−02)[2022-04-01]. https://ivdc.chinacdc.cn/cnic/zyzx/jcfa/201605/t20160520_129701.htm. [13] 王恒芹, 甘雨露, 贺良, 等. 2018-2020年万州区外环境禽流感病毒监测分析[J]. 实用预防医学,2022,29(2):249–252. DOI:10.3969/j.issn.1006−3110.2022.02.033.Wang HQ, Gan YL, He L, et al. Experimental study and health laboratory technology surveillance on avian influenza virus in external environment in Wanzhou district, 2018−2020[J]. Pract Prev Med, 2022, 29(2): 249–252. DOI: 10.3969/j.issn.1006−3110.2022.02.033. [14] 王兰, 靳妍, 王晓璐, 等. 浙江省临海市2016-2019年禽流感病毒外环境监测结果分析[J]. 中国预防医学杂志,2020,21(5):549–553. DOI:10.16506/j.1009−6639.2020.05.015.Wang L, Jin Y, Wang XL, et al. Distribution of avian influenza A virus in poultry-related environment in Linhai of Zhejiang province in 2016–2019[J]. Chin Prev Med, 2020, 21(5): 549–553. DOI: 10.16506/j.1009−6639.2020.05.015. [15] Naguib MM, Verhagen JH, Mostafa A, et al. Global patterns of avian influenza A (H7): virus evolution and zoonotic threats[J]. FEMS Microbiol Rev, 2019, 43(6): 608–621. DOI: 10.1093/femsre/fuz019. [16] Ghalekhani N, Bokaie S, Eybpoosh S, et al. Spatio-temporal history of H9N2 viruses in Iran and neighbor countries by Bayesian analysis and molecular characterization[J]. Asian Pac J Trop Med, 2021, 14(7): 309–315. DOI: 10.4103/1995−7645.320521. [17] Bhat S, James J, Sadeyen JR, et al. Coinfection of chickens with H9N2 and H7N9 avian influenza viruses leads to emergence of reassortant H9N9 virus with increased fitness for poultry and a zoonotic potential[J]. J Virol, 2022, 96(5): e0185621. DOI: 10.1128/jvi.01856−21. [18] Yang F, Xiao YX, Liu FM, et al. Molecular characterization and antigenic analysis of reassortant H9N2 subtype avian influenza viruses in Eastern China in 2016[J]. Virus Res, 2021, 306: 198577. DOI: 10.1016/j.virusres.2021.198577. [19] Song WJ, Qin K. Human-infecting influenza A (H9N2) virus: A forgotten potential pandemic strain?[J]. Zoonoses Public Health, 2020, 67(3): 203–212. DOI: 10.1111/zph.12685. [20] Pusch EA, Suarez DL. The multifaceted zoonotic risk of H9N2 avian influenza[J]. Vet Sci, 2018, 5(4): 82. DOI: 10.3390/vetsci5040082. [21] 张烨, 李晓丹, 邹淑梅, 等. 2009~2013年我国活禽市场环境样本中禽流感病毒的检测[J]. 病毒学报,2015,31(6):615–619. DOI: 10.13242/j.cnki.bingduxuebao.002820.Zhang Y, Li XD, Zou SM, et al. Detection of avian influenza virus in environmental samples collected from live poultry markets in China during 2009-2013[J]. Chinese J Virol, 2015, 31(6): 615–619. DOI: 10.13242/j.cnki.bingduxuebao.002820. [22] Biswas PK, Christensen JP, Ahmed SSU, et al. Risk for infection with highly pathogenic avian influenza virus (H5N1) in backyard chickens, Bangladesh[J]. Emerg Infect Dis, 2009, 15(12): 1931–1936. DOI: 10.3201/eid1512.090643. -

计量
- 文章访问数: 103
- HTML全文浏览量: 51
- PDF下载量: 16
- 被引次数: 0