2022年湖北省人与家养动物中荆门蜱病毒感染状况初步研究

张秀丹 李贝杰 王静 孙晖 郑雅匀 罗雪莲

张秀丹, 李贝杰, 王静, 孙晖, 郑雅匀, 罗雪莲. 2022年湖北省人与家养动物中荆门蜱病毒感染状况初步研究[J]. 疾病监测. doi: 10.3784/jbjc.202210200459
引用本文: 张秀丹, 李贝杰, 王静, 孙晖, 郑雅匀, 罗雪莲. 2022年湖北省人与家养动物中荆门蜱病毒感染状况初步研究[J]. 疾病监测. doi: 10.3784/jbjc.202210200459
Zhang Xiudan, Li Beijie, Wang Jing, Sun Hui, Zheng Yayun, Luo Xuelian. A preliminary study of Jingmen tick virus infection in human and domestic animals in Hubei, 2022[J]. Disease Surveillance. doi: 10.3784/jbjc.202210200459
Citation: Zhang Xiudan, Li Beijie, Wang Jing, Sun Hui, Zheng Yayun, Luo Xuelian. A preliminary study of Jingmen tick virus infection in human and domestic animals in Hubei, 2022[J]. Disease Surveillance. doi: 10.3784/jbjc.202210200459

2022年湖北省人与家养动物中荆门蜱病毒感染状况初步研究

doi: 10.3784/jbjc.202210200459
基金项目: 国家自然科学基金(No. 81802017)
详细信息
    作者简介:

    张秀丹,女,山西省朔州市人,在读硕士研究生,主要从事新病毒分离鉴定,Email: zxiudan@163.com

    通讯作者:

    罗雪莲,Tel:010−58900749,Email:luoxuelian@icdc.cn

  • 中图分类号: R211; R51; R384

A preliminary study of Jingmen tick virus infection in human and domestic animals in Hubei, 2022

Funds: This study was supported by the National Natural Science Foundation of China (NO.81802017)
More Information
  • 摘要:   目的  对2022年湖北省人和家养动物血清中荆门蜱病毒(JMTV)的抗体阳性率进行初步研究,评估荆门蜱病毒感染人群和动物的风险。  方法  将JMTV NS3蛋白在大肠埃希菌中表达并纯化,制备ELISA包被抗原,利用人和动物血清分别确定cut-off值;收集湖北多市牛羊养殖场采集的牛、羊血清,武汉市中心医院体检健康人血清,对这些血清样本以及实验室保存的林区居民血清进行JMTV特异性抗体以及核酸检测。  结果  初步建立基于NS3蛋白的JMTV 抗体检测ELISA方法。 确定人血清、牛血清和羊血清的cut-off值分别为0.342、0.098和0.298。 44份牛血清和193份羊血清中JMTV抗体阳性率分别为4.55%和3.63%。 174份体检健康人和13份林区居民血清JMTV抗体结果均为阴性。 所有样本中均未检测到JMTV的核酸片段。  结论  家养动物牛、羊血清中检出JMTV特异性抗体,提示需关注牛、羊作为蜱携带者导致病毒扩散的风险。
  • 图  1  NS3信号肽分析

    注:Sec/SPI. 由 Sec 转座转运,并由信号肽酶 I (Lep) 切割的“标准”分泌信号肽;CS. 用来区分是否为剪切位点,最高峰值为剪切位点后的第一个氨基酸(即成熟蛋白的第一个氨基酸残基);S-score. 用来区分相应位置是否为信号肽区域

    Figure  1.  NS3 Signal peptide analysis

    图  2  NS3蛋白跨膜结构域

    Figure  2.  Transmembrane domain of NS3 protein

    图  3  NS3蛋白小量诱导表达及表达形式的SDS-PAGE鉴定

    注:a. NS3蛋白小量诱导表达SDS-PAGE鉴定:M. Marker;泳道1. 未诱导;泳道2~4. 1 mmol/LIPTG诱导不同单克隆菌株。b. NS3蛋白表达形式SDS-PAGE鉴定:M. Marker;泳道1. 上清;泳道2. 沉淀

    Figure  3.  SDS-PAGE identification of small amount induced expression and expression form of NS3 protein

    图  4  NS3蛋白表达(包涵体)纯化SDS-PAGE结果

    注:M. Marker;泳道1. 过柱后;泳道2~6. 300 mmol/L咪唑洗脱的NS3重组蛋白

    Figure  4.  SDS-PAGE identification of NS3 protein expression (inclusion bodies) purification

    图  5  NS3蛋白his单抗Western Blot分析

    注:M. Marker;泳道1. NS3蛋白

    Figure  5.  Western blot analysis of NS3 protein his monoclonal antibod

    图  6  人群血清样本A450值分布

    注:A450. 吸光值

    Figure  6.  Distribution of A450 value in serum samples of people

    图  7  动物血清样本A450值分布

    注:A450 吸光值

    Figure  7.  Distribution of A450 value in serum samples of beast

    表  1  动物采样信息表

    Table  1.   Information about animal samples

    采样时间地点养殖场名称 种属样本类型样本数量
    2022年5月 湖北宜昌市 CY 血清 50份
    XT 血清 8份
    YD 血清 10份
    DJ 血清 9份
    GX 血清 10份
    2022年6月 湖北宜昌市 CY 血清(血块) 31份(31份)
    湖北黄冈市 MC 血清(血块) 34份(34份)
    LT 血清(血块) 41份(41份)
    湖北十堰市 ZS 血清(血块) 5份(5份)
    湖北宜昌市 ZJ 血清(血块) 14份(14份)
    湖北襄阳市 ZY 血清(血块) 25份(25份)
    下载: 导出CSV

    表  2  荆门蜱病毒筛查引物

    Table  2.   Primers for the detection of JMTV

    基因引物
    名称
    序列(5'~3')参考
    文献
    RdRp 194F1 TCGGCGATAAATAGGAGAGGTGCCAT 232
    194F2 GGACTGGAGACAAGACGTCAACACG
    194R1 TCTGCGTAGAGTCGGTAGAGGTGGTG
    194R2 CGCCATTTCTTCATCCTCCGCTAG
    NS5 R2664 CATCATCCARCCYTTGGYKATRCC In the study
    R801 TGCATCATCCAKGCRTCYACWGCRTC
    F555 GARGARTGGATGGCSGAYCC
    F645 TGYGCRGGMMGAGGAGGMTGGAG
    下载: 导出CSV

    表  3  不同养殖场血清样本JMTV阳性率(%)

    Table  3.   Positive rate of JMTV in serum samples from different farms

    样本类型养殖场名称样本数量阳性例数阳性率
    牛血清 ZS    5    0 0.00
    ZJ 14 1 7.14
    ZY 25 1 4.00
    羊血清 CY 81 6 7.41
    XT 8 0 0.00
    YD 10 0 0.00
    DJ 9 0 0.00
    GX 10 0 0.00
    LT 41 1 2.44
    MC 34 0 0.00
    下载: 导出CSV
  • [1] Ladner JT, Wiley MR, Beitzel B, et al. A multicomponent animal virus isolated from mosquitoes[J]. Cell Host Microbe, 2016, 20(3): 357–367. DOI:  10.1016/j.chom.2016.07.011.
    [2] Qin XC, Shi M, Tian JH, et al. A tick-borne segmented RNA virus contains genome segments derived from unsegmented viral ancestors[J]. Proc Natl Acad Sci USA, 2014, 111(18): 6744–6749. DOI:  10.1073/pnas.1324194111.
    [3] 王泽东. 新型分节段黄病毒的发现及其流行病学研究[D]. 北京: 中国农业科学院, 2019.

    Wang ZD. Discovery and epidemiology of a novel segmented flavivirus[D]. Beijing: Chinese Academy of Agricultural Sciences, 2019.
    [4] de Souza WM, Fumagalli MJ, de Oliveira Torres Carrasco A, et al. Viral diversity of Rhipicephalus microplus parasitizing cattle in southern Brazil[J]. Sci Rep, 2018, 8(1): 16315. DOI: 10.1038/s41598−018−34630−1.
    [5] Villa EC, Maruyama SR, de Miranda-Santos IKF, et al. Complete coding genome sequence for mogiana tick virus, a jingmenvirus isolated from ticks in brazil[J]. Genome Announc, 2017, 5(18): e00232–17. DOI: 10.1128/genomeA.00232−17.
    [6] Emmerich P, Jakupi X, von Possel R, et al. Viral metagenomics, genetic and evolutionary characteristics of Crimean-Congo hemorrhagic fever orthonairovirus in humans, Kosovo[J]. Infect Genet Evol, 2018, 65: 6–11. DOI:  10.1016/j.meegid.2018.07.010.
    [7] Dinçer E, Hacıoğlu S, Kar S, et al. Survey and characterization of Jingmen tick virus variants[J]. Viruses, 2019, 11(11): 1071. DOI:  10.3390/v11111071.
    [8] Jia N, Liu HB, Ni XB, et al. Emergence of human infection with Jingmen tick virus in China: a retrospective study[J]. eBioMedicine, 2019, 43: 317–324. DOI:  10.1016/j.ebiom.2019.04.004.
    [9] Kholodilov IS, Litov AG, Klimentov AS, et al. Isolation and characterisation of alongshan virus in Russia[J]. Viruses, 2020, 12(4): 362. DOI:  10.3390/v12040362.
    [10] Kuivanen S, Levanov L, Kareinen L, et al. Detection of novel tick-borne pathogen, Alongshan virus, in Ixodes ricinus ticks, south-eastern Finland, 2019[J]. Euro Surveill, 2019, 24(27): 1900394. DOI: 10.2807/1560−7917.ES.2019.24.27.1900394.
    [11] Guo JJ, Lin XD, Chen YM, et al. Diversity and circulation of Jingmen tick virus in ticks and mammals[J]. Virus Evol, 2020, 6(2): veaa051. DOI:  10.1093/ve/veaa051.
    [12] Meng F, Ding MM, Tan ZZ, et al. Virome analysis of tick-borne viruses in Heilongjiang province, China[J]. Ticks Tick Borne Dis, 2019, 10(2): 412–420. DOI:  10.1016/j.ttbdis.2018.12.002.
    [13] Wang ZD, Wang W, Wang NN, et al. Prevalence of the emerging novel Alongshan virus infection in sheep and cattle in Inner Mongolia, northeastern China[J]. Parasit Vectors, 2019, 12(1): 450. DOI: 10.1186/s13071−019−3707−1.
    [14] Kobayashi D, Kuwata R, Kimura T, et al. Detection of jingmenviruses in Japan with evidence of vertical transmission in ticks[J]. Viruses, 2021, 13(12): 2547. DOI:  10.3390/v13122547.
    [15] Maruyama SR, Castro-Jorge LA, Ribeiro JMC, et al. Characterisation of divergent flavivirus NS3 and NS5 protein sequences detected in Rhipicephalus microplus ticks from Brazil[J]. Mem Inst Oswaldo Cruz, 2014, 109(1): 38–50. DOI: 10.1590/0074−0276130166.
    [16] Ogola EO, Kopp A, Bastos ADS, et al. Jingmen tick virus in ticks from kenya[J]. Viruses, 2022, 14(5): 1041. DOI:  10.3390/v14051041.
    [17] Shi M, Lin XD, Vasilakis N, et al. Divergent viruses discovered in arthropods and vertebrates revise the evolutionary history of the Flaviviridae and related viruses[J]. J Virol, 2016, 90(2): 659–669. DOI: 10.1128/JVI.02036−15.
    [18] Temmam S, Bigot T, Chrétien D, et al. Insights into the host range, genetic diversity, and geographical distribution of jingmenviruses[J]. mSphere, 2019, 4(6): e00645–19. DOI: 10.1128/mSphere.00645−19.
    [19] de Oliveira Pascoal J, de Siqueira SM, de Costa Maia R, et al. Detection and molecular characterization of Mogiana tick virus (MGTV) in Rhipicephalus microplus collected from cattle in a savannah area, Uberlândia, Brazil[J]. Ticks Tick Borne Dis, 2019, 10(1): 162–165. DOI:  10.1016/j.ttbdis.2018.10.002.
    [20] Wang ZD, Wang B, Wei F, et al. A new segmented virus associated with human febrile illness in China[J]. N Engl J Med, 2019, 380(22): 2116–2125. DOI:  10.1056/NEJMoa1805068.
    [21] Bartelma G, Padmanabhan R. Expression, purification, and characterization of the RNA 5'-triphosphatase activity of dengue virus type 2 nonstructural protein 3[J]. Virology, 2002, 299(1): 122–132. DOI:  10.1006/viro.2002.1504.
    [22] Li HT, Clum S, You S, et al. The serine protease and RNA-stimulated nucleoside triphosphatase and RNA helicase functional domains of dengue virus type 2 NS3 converge within a region of 20 amino acids[J]. J Virol, 1999, 73(4): 3108–3116. DOI: 10.1128/JVI.73.4.3108−3116.1999.
    [23] Rothman AL, Kurane I, Ennis FA. Multiple specificities in the murine CD4+ and CD8+ T-cell response to dengue virus[J]. J Virol, 1996, 70(10): 6540–6546. DOI: 10.1128/JVI.70.10.6540−6546.1996.
    [24] Wengler G, Wengler G. The carboxy-terminal part of the NS 3 protein of the West Nile flavivirus can be isolated as a soluble protein after proteolytic cleavage and represents an RNA-stimulated NTPase[J]. Virology, 1991, 184(2): 707–715. DOI: 10.1016/0042−6822(91)90440−m.
    [25] 陈亚洁. 登革病毒非结构蛋白NS3 NTPase/RNA解旋酶结构域的原核表达、活性研究及拮抗肽筛选[D]. 北京: 中国人民解放军军事医学科学院, 2005.

    Chen YJ. Expression, purification and characterization of NTPase/RNA helicase domain of dengue virus type 2 nonstructural protein 3 and screening its antagonistic peptide[D]. Beijing: Institute of Microbiology and Epidemiology Academy of Military Medical Sciences, 2005.
    [26] Simmons M, Sun PF, Putnak R. Recombinant dengue 2 virus NS3 helicase protein enhances antibody and T-cell response of purified inactivated vaccine[J]. PLoS One, 2016, 11(4): e0152811. DOI:  10.1371/journal.pone.0152811.
    [27] Yan MM, Huang JL, Chen JN, et al. Preparation, identification, and functional analysis of monoclonal antibodies against atypical porcine pestivirus NS3 protein[J]. J Vet Diagn Invest, 2020, 32(5): 695–699. DOI:  10.1177/1040638720939923.
    [28] 朱世强, 王帅勇, 王娟, 等. 猪源盖塔病毒抗体间接ELISA检测方法的初步建立及其优化[J]. 中国动物传染病学报,2023,31(1):66–71. DOI:10.19958/j.cnki.cn31−2031/s.20210817.014.

    Zhu SQ, Wang SY, Wang J, et al. Development and optimization of an indirect ELISA of porcine getah virus[J]. Chinese Journal of Animal Infectious Diseases, 2023, 31(1): 66–71. DOI: 10.19958/j.cnki.cn31−2031/s.20210817.014.
    [29] 陆欣然, 华思红, 樊钰莹, 等. 猪瘟病毒石门株NS3蛋白的原核表达及其抗体检测间接ELISA的建立[J]. 动物医学进展,2017,38(4):28–34. DOI:10.16437/j.cnki.1007−5038.2017.04.006.

    Lu XR, Hua SH, Fan YY, et al. Prokaryotic expression of NS3 protein in classical swine fever virus shimen strain and establishment of indirect ELISA for antibody detection[J]. Prog Vet Med, 2017, 38(4): 28–34. DOI: 10.16437/j.cnki.1007−5038.2017.04.006.
    [30] 黎振标, 任旭皎, 刘健新, 等. 基于Erns蛋白的猪非典型瘟病毒间接ELISA检测方法的建立[J]. 中国动物传染病学报,2020,28(3):35–41.

    Li ZB, Ren XJ, Liu JX, et al. Development of an indirect ELISA method of detection of antibodies to Erns protein of atypical porcine pestivirus[J]. Chin J Vet Parasitol, 2020, 28(3): 35–41.
    [31] Ding HL, Wen YK, Xu ZB, et al. Development of an ELISA for distinguishing convalescent sera with Mycoplasma hyopneumoniae infection from hyperimmune sera responses to bacterin vaccination in pigs[J]. Vet Med Sci, 2021, 7(5): 1831–1840. DOI:  10.1002/vms3.539.
    [32] 余竹梅, 熊衍文, 王文, 等. 中国北方地区蜱携带荆门蜱病毒的分子流行特征分析[J]. 中国媒介生物学及控制杂志,2020,31(3):272–276. DOI: 10.11853/j.issn.1003.8280.2020.03.006.

    Yu ZM, Xiong YW, Wang W, et al. Analysis of molecular epidemic characteristics of Jingmen tick virus among ticks in northern China[J]. Chin J Vector Biol Control, 2020, 31(3): 272–276. DOI:  10.11853/j.issn.1003.8280.2020.03.006.
  • 加载中
图(7) / 表(3)
计量
  • 文章访问数:  106
  • HTML全文浏览量:  42
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-20
  • 录用日期:  2023-04-22
  • 网络出版日期:  2023-04-22

目录

    /

    返回文章
    返回

    在线交流

    防诈骗公告

    大家好:近期有不法分子以本刊编辑身份添加作者微信,请务必提高警惕!本刊关于稿件的一切事项通知均采用编辑部唯一邮箱(jbjc@icdc.cn)和座机(010-58900732)联系作者,且在录用稿件后仅收取版面费,无其他任何名目费用(如审稿费和加急费等),非编辑部邮箱发送的本刊收费用通知等均为诈骗,不要随意汇入款项!如有可疑及时致电编辑部核实确认!