A preliminary study of Jingmen tick virus infection in human and domestic animals in Hubei, 2022
-
摘要:
目的 对2022年湖北省人和家养动物血清中荆门蜱病毒(JMTV)的抗体阳性率进行初步研究,评估荆门蜱病毒感染人群和动物的风险。 方法 将JMTV NS3蛋白在大肠埃希菌中表达并纯化,制备ELISA包被抗原,利用人和动物血清分别确定cut-off值;收集湖北多市牛羊养殖场采集的牛、羊血清,武汉市中心医院体检健康人血清,对这些血清样本以及实验室保存的林区居民血清进行JMTV特异性抗体以及核酸检测。 结果 初步建立基于NS3蛋白的JMTV 抗体检测ELISA方法。 确定人血清、牛血清和羊血清的cut-off值分别为0.342、0.098和0.298。 44份牛血清和193份羊血清中JMTV抗体阳性率分别为4.55%和3.63%。 174份体检健康人和13份林区居民血清JMTV抗体结果均为阴性。 所有样本中均未检测到JMTV的核酸片段。 结论 家养动物牛、羊血清中检出JMTV特异性抗体,提示需关注牛、羊作为蜱携带者导致病毒扩散的风险。 Abstract:Objective T o study the positive rate of Jingmen tick virus (JMTV) antibody in serum of domestic animals and assess the risk of JMTV infection in humans and domestic animals in Hubei province, 2022. Methods JMTV NS3 protein as antigen was expressed in Escherichia coli and purified. ELISA envelope antigen was prepared, and cut-off values were determined by human and animal serum. Serum samples from cattle, sheep from farms and serum samples from healthy people from hospitals were collected in Hubei. JMTV-specific antibody and nucleic acid were detected in theses samples, as well as serum from forest residents stored in our laboratory. In addition, JMTV-specific nucleic acid was detected in all samples by RT-PCR method. Results An ELISA assay for JMTV antibody detection based on NS3 protein was established. The cut-off values of human, bovine and sheep serum were determined to be 0.342, 0.098 and 0.298, respectively. The positive rates of JMTV antibody in 44 bovine and 193 sheep serum were 4.55% and 3.63%, respectively. JMTV-specific antibody were negative in 174 healthy subjects and 13 forest residents. No nucleic acid fragments of JMTV were detected in all samples. Conclusion JMTV specific antibody was detected in the serum of domestic cattle and sheep, suggesting that it is necessary to pay attention to the spread risk of the virus caused by cattle and sheep. -
Key words:
- Jingmen tick virus /
- NS3 /
- Enzyme-linked immunosorbent assay /
- Serological screening
-
表 1 动物采样信息表
Table 1. Information about animal samples
采样时间 地点 养殖场名称 种属 样本类型 样本数量 2022年5月 湖北宜昌市 CY 羊 血清 50份 XT 羊 血清 8份 YD 羊 血清 10份 DJ 羊 血清 9份 GX 羊 血清 10份 2022年6月 湖北宜昌市 CY 羊 血清(血块) 31份(31份) 湖北黄冈市 MC 羊 血清(血块) 34份(34份) LT 羊 血清(血块) 41份(41份) 湖北十堰市 ZS 牛 血清(血块) 5份(5份) 湖北宜昌市 ZJ 牛 血清(血块) 14份(14份) 湖北襄阳市 ZY 牛 血清(血块) 25份(25份) 表 2 荆门蜱病毒筛查引物
Table 2. Primers for the detection of JMTV
表 3 不同养殖场血清样本JMTV阳性率(%)
Table 3. Positive rate of JMTV in serum samples from different farms
样本类型 养殖场名称 样本数量 阳性例数 阳性率 牛血清 ZS 5 0 0.00 ZJ 14 1 7.14 ZY 25 1 4.00 羊血清 CY 81 6 7.41 XT 8 0 0.00 YD 10 0 0.00 DJ 9 0 0.00 GX 10 0 0.00 LT 41 1 2.44 MC 34 0 0.00 -
[1] Ladner JT, Wiley MR, Beitzel B, et al. A multicomponent animal virus isolated from mosquitoes[J]. Cell Host Microbe, 2016, 20(3): 357–367. DOI: 10.1016/j.chom.2016.07.011. [2] Qin XC, Shi M, Tian JH, et al. A tick-borne segmented RNA virus contains genome segments derived from unsegmented viral ancestors[J]. Proc Natl Acad Sci USA, 2014, 111(18): 6744–6749. DOI: 10.1073/pnas.1324194111. [3] 王泽东. 新型分节段黄病毒的发现及其流行病学研究[D]. 北京: 中国农业科学院, 2019.Wang ZD. Discovery and epidemiology of a novel segmented flavivirus[D]. Beijing: Chinese Academy of Agricultural Sciences, 2019. [4] de Souza WM, Fumagalli MJ, de Oliveira Torres Carrasco A, et al. Viral diversity of Rhipicephalus microplus parasitizing cattle in southern Brazil[J]. Sci Rep, 2018, 8(1): 16315. DOI: 10.1038/s41598−018−34630−1. [5] Villa EC, Maruyama SR, de Miranda-Santos IKF, et al. Complete coding genome sequence for mogiana tick virus, a jingmenvirus isolated from ticks in brazil[J]. Genome Announc, 2017, 5(18): e00232–17. DOI: 10.1128/genomeA.00232−17. [6] Emmerich P, Jakupi X, von Possel R, et al. Viral metagenomics, genetic and evolutionary characteristics of Crimean-Congo hemorrhagic fever orthonairovirus in humans, Kosovo[J]. Infect Genet Evol, 2018, 65: 6–11. DOI: 10.1016/j.meegid.2018.07.010. [7] Dinçer E, Hacıoğlu S, Kar S, et al. Survey and characterization of Jingmen tick virus variants[J]. Viruses, 2019, 11(11): 1071. DOI: 10.3390/v11111071. [8] Jia N, Liu HB, Ni XB, et al. Emergence of human infection with Jingmen tick virus in China: a retrospective study[J]. eBioMedicine, 2019, 43: 317–324. DOI: 10.1016/j.ebiom.2019.04.004. [9] Kholodilov IS, Litov AG, Klimentov AS, et al. Isolation and characterisation of alongshan virus in Russia[J]. Viruses, 2020, 12(4): 362. DOI: 10.3390/v12040362. [10] Kuivanen S, Levanov L, Kareinen L, et al. Detection of novel tick-borne pathogen, Alongshan virus, in Ixodes ricinus ticks, south-eastern Finland, 2019[J]. Euro Surveill, 2019, 24(27): 1900394. DOI: 10.2807/1560−7917.ES.2019.24.27.1900394. [11] Guo JJ, Lin XD, Chen YM, et al. Diversity and circulation of Jingmen tick virus in ticks and mammals[J]. Virus Evol, 2020, 6(2): veaa051. DOI: 10.1093/ve/veaa051. [12] Meng F, Ding MM, Tan ZZ, et al. Virome analysis of tick-borne viruses in Heilongjiang province, China[J]. Ticks Tick Borne Dis, 2019, 10(2): 412–420. DOI: 10.1016/j.ttbdis.2018.12.002. [13] Wang ZD, Wang W, Wang NN, et al. Prevalence of the emerging novel Alongshan virus infection in sheep and cattle in Inner Mongolia, northeastern China[J]. Parasit Vectors, 2019, 12(1): 450. DOI: 10.1186/s13071−019−3707−1. [14] Kobayashi D, Kuwata R, Kimura T, et al. Detection of jingmenviruses in Japan with evidence of vertical transmission in ticks[J]. Viruses, 2021, 13(12): 2547. DOI: 10.3390/v13122547. [15] Maruyama SR, Castro-Jorge LA, Ribeiro JMC, et al. Characterisation of divergent flavivirus NS3 and NS5 protein sequences detected in Rhipicephalus microplus ticks from Brazil[J]. Mem Inst Oswaldo Cruz, 2014, 109(1): 38–50. DOI: 10.1590/0074−0276130166. [16] Ogola EO, Kopp A, Bastos ADS, et al. Jingmen tick virus in ticks from kenya[J]. Viruses, 2022, 14(5): 1041. DOI: 10.3390/v14051041. [17] Shi M, Lin XD, Vasilakis N, et al. Divergent viruses discovered in arthropods and vertebrates revise the evolutionary history of the Flaviviridae and related viruses[J]. J Virol, 2016, 90(2): 659–669. DOI: 10.1128/JVI.02036−15. [18] Temmam S, Bigot T, Chrétien D, et al. Insights into the host range, genetic diversity, and geographical distribution of jingmenviruses[J]. mSphere, 2019, 4(6): e00645–19. DOI: 10.1128/mSphere.00645−19. [19] de Oliveira Pascoal J, de Siqueira SM, de Costa Maia R, et al. Detection and molecular characterization of Mogiana tick virus (MGTV) in Rhipicephalus microplus collected from cattle in a savannah area, Uberlândia, Brazil[J]. Ticks Tick Borne Dis, 2019, 10(1): 162–165. DOI: 10.1016/j.ttbdis.2018.10.002. [20] Wang ZD, Wang B, Wei F, et al. A new segmented virus associated with human febrile illness in China[J]. N Engl J Med, 2019, 380(22): 2116–2125. DOI: 10.1056/NEJMoa1805068. [21] Bartelma G, Padmanabhan R. Expression, purification, and characterization of the RNA 5'-triphosphatase activity of dengue virus type 2 nonstructural protein 3[J]. Virology, 2002, 299(1): 122–132. DOI: 10.1006/viro.2002.1504. [22] Li HT, Clum S, You S, et al. The serine protease and RNA-stimulated nucleoside triphosphatase and RNA helicase functional domains of dengue virus type 2 NS3 converge within a region of 20 amino acids[J]. J Virol, 1999, 73(4): 3108–3116. DOI: 10.1128/JVI.73.4.3108−3116.1999. [23] Rothman AL, Kurane I, Ennis FA. Multiple specificities in the murine CD4+ and CD8+ T-cell response to dengue virus[J]. J Virol, 1996, 70(10): 6540–6546. DOI: 10.1128/JVI.70.10.6540−6546.1996. [24] Wengler G, Wengler G. The carboxy-terminal part of the NS 3 protein of the West Nile flavivirus can be isolated as a soluble protein after proteolytic cleavage and represents an RNA-stimulated NTPase[J]. Virology, 1991, 184(2): 707–715. DOI: 10.1016/0042−6822(91)90440−m. [25] 陈亚洁. 登革病毒非结构蛋白NS3 NTPase/RNA解旋酶结构域的原核表达、活性研究及拮抗肽筛选[D]. 北京: 中国人民解放军军事医学科学院, 2005.Chen YJ. Expression, purification and characterization of NTPase/RNA helicase domain of dengue virus type 2 nonstructural protein 3 and screening its antagonistic peptide[D]. Beijing: Institute of Microbiology and Epidemiology Academy of Military Medical Sciences, 2005. [26] Simmons M, Sun PF, Putnak R. Recombinant dengue 2 virus NS3 helicase protein enhances antibody and T-cell response of purified inactivated vaccine[J]. PLoS One, 2016, 11(4): e0152811. DOI: 10.1371/journal.pone.0152811. [27] Yan MM, Huang JL, Chen JN, et al. Preparation, identification, and functional analysis of monoclonal antibodies against atypical porcine pestivirus NS3 protein[J]. J Vet Diagn Invest, 2020, 32(5): 695–699. DOI: 10.1177/1040638720939923. [28] 朱世强, 王帅勇, 王娟, 等. 猪源盖塔病毒抗体间接ELISA检测方法的初步建立及其优化[J]. 中国动物传染病学报,2023,31(1):66–71. DOI:10.19958/j.cnki.cn31−2031/s.20210817.014.Zhu SQ, Wang SY, Wang J, et al. Development and optimization of an indirect ELISA of porcine getah virus[J]. Chinese Journal of Animal Infectious Diseases, 2023, 31(1): 66–71. DOI: 10.19958/j.cnki.cn31−2031/s.20210817.014. [29] 陆欣然, 华思红, 樊钰莹, 等. 猪瘟病毒石门株NS3蛋白的原核表达及其抗体检测间接ELISA的建立[J]. 动物医学进展,2017,38(4):28–34. DOI:10.16437/j.cnki.1007−5038.2017.04.006.Lu XR, Hua SH, Fan YY, et al. Prokaryotic expression of NS3 protein in classical swine fever virus shimen strain and establishment of indirect ELISA for antibody detection[J]. Prog Vet Med, 2017, 38(4): 28–34. DOI: 10.16437/j.cnki.1007−5038.2017.04.006. [30] 黎振标, 任旭皎, 刘健新, 等. 基于Erns蛋白的猪非典型瘟病毒间接ELISA检测方法的建立[J]. 中国动物传染病学报,2020,28(3):35–41.Li ZB, Ren XJ, Liu JX, et al. Development of an indirect ELISA method of detection of antibodies to Erns protein of atypical porcine pestivirus[J]. Chin J Vet Parasitol, 2020, 28(3): 35–41. [31] Ding HL, Wen YK, Xu ZB, et al. Development of an ELISA for distinguishing convalescent sera with Mycoplasma hyopneumoniae infection from hyperimmune sera responses to bacterin vaccination in pigs[J]. Vet Med Sci, 2021, 7(5): 1831–1840. DOI: 10.1002/vms3.539. [32] 余竹梅, 熊衍文, 王文, 等. 中国北方地区蜱携带荆门蜱病毒的分子流行特征分析[J]. 中国媒介生物学及控制杂志,2020,31(3):272–276. DOI: 10.11853/j.issn.1003.8280.2020.03.006.Yu ZM, Xiong YW, Wang W, et al. Analysis of molecular epidemic characteristics of Jingmen tick virus among ticks in northern China[J]. Chin J Vector Biol Control, 2020, 31(3): 272–276. DOI: 10.11853/j.issn.1003.8280.2020.03.006. -