-
摘要:
目的 对3株分离自内蒙古自治区的布鲁氏菌噬菌体A1、NMY-1和NMY-2生物学特性展开分析,获取生物学信息。 方法 采用双层平板法纯化、增殖噬菌体,观察噬斑特征及测定效价;使用透射电镜观察噬菌体形态;用双层平板法和点滴法测定噬菌体宿主谱、最佳感染复数(MOI)、一步生长曲线和理化稳定性。 结果 经电镜观察,3株噬菌体均为二十面体结构,头部直径61.0 nm~65.6 nm,具有一个长为16.5 nm~19.2 nm短尾;在常规检测浓度(RTD)和104 × RTD下,噬菌体A1和NMY-1可以裂解光滑型牛种、羊种、猪种和沙林鼠种布鲁氏菌,NMY-2能够裂解粗糙型犬种、牛种和羊种布鲁氏菌,且在高浓度(104 × RTD)时可裂解的菌株数量增加;A1、NMY-1和NMY-2的MOI分别为 0.1、0.001、0.01;一步生长曲线结果显示A1和NMY-2潜伏期约为30~60 min,暴发期20~40 min,暴发量分别为2 210 蚀斑形成单位(PFU)/cell和6 000 PFU/cell,NMY-1的潜伏期和暴发期较长,分别为600 min和420 min,暴发量为1.90×105 PFU/cell;3株噬菌体在40~60 ℃,pH为2~13,紫外线照射30 min时保持良好活性。 结论 本研究明确了噬菌体A1、NMY-1和NMY-2的生物学特征和属性,丰富了布鲁氏菌的噬菌体分型系统,为噬菌体疗法治疗耐药布鲁氏菌提供了更多选择。 Abstract:Objective To understand the biological characteristics of three Brucella phages A1, NMY-1 and NMY-2 isolated from Inner Mongolia autonomous region. Methods The phages were purified and proliferated using double layer plate method, the characteristics of the plaques were observed, and the titers were determined, and transmission electron microscopy was used to observe the morphology of the phages. The phage host-range, optimal multiplicity of infection (MOI), one-step growth curve and physicochemical stability were determined using double layer plate method and drop method. Results All three phages in this study had icosahedral structures with a head diameter of 61.0 nm–65.6 nm and a short tail of 16.5 nm–19.2 nm, which were observed by electron microscopy; At the routine test dilution (RTD) and 104×RTD, bacteriophage A1 and NMY-1 could lyse smooth B. abortus, B. melitensis, B. suis and B. neotomae, NMY-2 could lyse rough B. abortus, B. melitensis and B. canis, and at high concentration (104×RTD), the number of strains that could be lysed by three phages increased; the MOIs of A1, NMY-1, and NMY-2 were 0.1, 0.001, and 0.01, respectively; one-step growth curve results showed that A1 and NMY-2 had a latency of about 30–60 min, an outbreak period of 20–40 min, and an outbreak amount of 2210 PFU/cell and 6000 PFU/cell, respectively, and the latency and outbreak period of NMY-1 were longer, with 600 min and 420 min, respectively, with an outbreak amount of 1.90×105 PFU/cell. The three phages maintained good activity at 40– 60 ℃, pH of 2–13 and ultraviolet irradiation for 30 min. Conclusion The biological characteristics and attributes of phages A1, NMY-1 and NMY-2 were clarified, and the phage typing system of Brucella was enriched, which can provide more choice for phage therapy in the treatment of drug-resistant Brucella infection. -
Key words:
- Brucella phage /
- Brucella /
- Biological characteristic
-
表 1 噬菌体宿主谱测定结果
Table 1. Results of phage host profiling
菌 种 菌株数量 Tb裂解菌株数量 A1裂解菌株数量 NMY-1裂解菌株数量 NMY-2裂解菌株数量 RTD 104×RTD RTD 104×RTD RTD 104×RTD RTD 104×RTD 牛种布鲁氏菌(S) 7 7 7 7 7 7 7 0 0 牛种布鲁氏菌(R) 2 0 0 0 0 0 0 1 2 羊种布鲁氏菌(S) 11 2 6 5 7 7 11 0 0 羊种布鲁氏菌(R) 6 0 0 0 0 0 0 3 6 猪种布鲁氏菌(S) 8 0 8 7 8 5 8 0 0 犬种布鲁氏菌(R) 11 0 0 0 0 0 0 11 11 沙林鼠种布鲁氏菌(S) 1 1 1 1 1 1 1 0 0 注:S. 光滑型;R. 粗糙型;RTD. 常规检测浓度 -
[1] Issabekov SS, Syrym NS, Sambetbayev AA, et al. Prospects of bacteriophage collections in disinfectant applications[J]. Vet World, 2022, 15(1): 220–231. DOI: 10.14202/vetworld.2022.220−231. [2] Zhang N, Huang DS, Wu W, et al. Animal brucellosis control or eradication programs worldwide: A systematic review of experiences and lessons learned[J]. Prev Vet Med, 2018, 160: 105–115. DOI: 10.1016/j.prevetmed.2018.10.002. [3] Musallam II, Abo-Shehada MN, Hegazy YM, et al. Systematic review of brucellosis in the Middle East: disease frequency in ruminants and humans and risk factors for human infection[J]. Epidemiol Infect, 2016, 144(4): 671–685. DOI: 10.1017/S0950268815002575. [4] 张海霞, 孙晓梅, 魏凯, 等. 布鲁氏菌病的研究进展[J]. 山东农业大学学报:自然科学版,2018,49(3):402–407. DOI:10.3969/j.issn.1000−2324.2018.03.007.Zhang HX, Sun XM, Wei K, et al. A review on brucellosis[J]. J Shandong Agric Univ:Nat Sci, 2018, 49(3): 402–407. DOI: 10.3969/j.issn.1000−2324.2018.03.007. [5] Farlow J, Filippov AA, Sergueev KV, et al. Comparative whole genome analysis of six diagnostic Brucella phage[J]. Gene, 2014, 541(2): 115–122. DOI: 10.1016/j.gene.2014.01.018. [6] Hammerl JA, Al Dahouk S, Nockler K, et al. F1 and Tbilisi are closely related Brucella phage exhibiting some distinct nucleotide variations which determine the host specificity[J]. Genome Announc, 2014, 2(1): e01250–13. DOI: 10.1128/genomeA.01250−13. [7] Rigby CE, Cerqueira-Campos ML, Kelly HA, et al. Properties and partial genetic characterization of Nepean phage and other lytic phages of Brucella species[J]. Can J Vet Res, 1989, 53(3): 319–325. [8] Flores V, López-Merino A, Mendoza-Hernandez G, et al. Comparative genomic analysis of two Brucella phage of distant origins[J]. Genomics, 2012, 99(4): 233–240. DOI: 10.1016/j.ygeno.2012.01.001. [9] Zhu CZ, Xiong HY, Han J, et al. Molecular characterization of Tb, a New approach for an ancient Brucella phage[J]. Int J Mol Sci, 2009, 10(7): 2999–3011. DOI: 10.3390/ijms10072999. [10] Morgan WJB. The examination of Brucella cultures for Lysis by phage[J]. Microbiology, 1963, 30(3): 437–443. DOI: 10.1099/00221287−30−3−437. [11] Corbel MJ, Thomas EL. Properties of some new Brucella phage isolates; evidence for lysogeny within the genus[J]. Dev Biol Stand, 1976, 31: 38–45. [12] Morris JA, Corbel MJ. Properties of a new phage lytic for Brucella suis[J]. J Gen Virol, 1973, 21(3): 539–544. DOI: 10.1099/0022−1317−21−3−539. [13] 刘志文. 对布鲁氏菌各生物型和种特异的羊型布鲁氏菌噬菌体的分离[J]. 地方病译丛, 1980(1): 55–56.Liu ZW. Isolation of Brucella melitensis phages specific for each biotype and species of Brucella[J]. Transl Endem Dis, 1980(1): 55–56. [14] Corbel MJ, Tolari F, Yadava VK. Characterisation of a new phage lytic for both smooth and non-smooth Brucella species[J]. Res Vet Sci, 1988, 44(1): 45–49. DOI: 10.1016/0034−5288(88)90012−4. [15] Corbel M. Properties of Brucella-phages lytic for non-smooth Brucella strains[J]. Dev Biol Stand, 1984, 56: 55–62. [16] 崔庆禄, 冬青, 孙秀兰. 布氏菌新噬菌体的分离及应用研究[J]. 中国地方病防治杂志,1995,10(5):280–281.Cui QL, Dong Q, Sun XL. Isolation and application of new bacteriophages of Brucella[J]. Chin J Control Endem Dis, 1995, 10(5): 280–281. [17] 尚德秋, 李元凯, 崔春槐, 等. 国外引进的布鲁氏菌噬菌体增殖试验观察[J]. 中国地方病学杂志, 1983(2): 69–71.Shang DQ, Li YK, Cui CH, et al. The experimental observation on propagation of Brucella--phages from C V L. WEGBRIDGE [J]. Chin J Endemiol, 1983(2): 69–71. [18] Mcduff CR, Jones LM, Wilson JB. Characteristics of Brucella phage[J]. J Bacteriol, 1962, 83(2): 324–329. DOI: 10.1128/jb.83.2.324−329.1962. [19] Ackermann HW, Simon F, Verger JM. A survey of Brucella phages and morphology of new isolates[J]. Intervirology, 1981, 16(1): 1–7. DOI: 10.1159/000149240. [20] 黄建, 苏城. 中国五株布鲁氏菌噬菌体的特性[J]. 地方病通报,1995,10(3):12–14.Huang J, Su C. Characterization of 5 strains of Brucella phage isolated in China[J]. Bull Dis Control Prev, 1995, 10(3): 12–14. [21] Tevdoradze E, Farlow J, Kotorashvili A, et al. Whole genome sequence comparison of ten diagnostic brucellaphages propagated on two Brucella abortus hosts[J]. Virol J, 2015, 12(1): 66. DOI: 10.1186/s12985−015−0287−3. [22] Sergueev KV, Filippov AA, Nikolich MP. Highly sensitive bacteriophage-based detection of Brucella abortus in mixed culture and spiked blood[J]. Viruses, 2017, 9(6): 144. DOI: 10.3390/v9060144. [23] Projahn M, Hammerl JA, Dieckmann R, et al. A proof of principle for the detection of viable Brucella spp. in raw milk by qPCR targeting bacteriophages[J]. Microorganisms, 2020, 8(9): 1326. DOI: 10.3390/microorganisms8091326. -