基于真实世界数据奥密克戎BA.5.2变异株传播动力学参数估算

刘天 徐琴雯 何诗琪 阮德欣 黄继贵 毛安禄

刘天, 徐琴雯, 何诗琪, 阮德欣, 黄继贵, 毛安禄. 基于真实世界数据奥密克戎BA.5.2变异株传播动力学参数估算[J]. 疾病监测, 2023, 38(4): 457-461. doi: 10.3784/jbjc.202211090483
引用本文: 刘天, 徐琴雯, 何诗琪, 阮德欣, 黄继贵, 毛安禄. 基于真实世界数据奥密克戎BA.5.2变异株传播动力学参数估算[J]. 疾病监测, 2023, 38(4): 457-461. doi: 10.3784/jbjc.202211090483
Liu Tian, Xu Qinwen, He Shiqi, Ruan Dexin, Huang Jigui, Mao Anlu. Estimation of transmission dynamics parameters for Omicron BA.5.2 variant—based on real-world data[J]. Disease Surveillance, 2023, 38(4): 457-461. doi: 10.3784/jbjc.202211090483
Citation: Liu Tian, Xu Qinwen, He Shiqi, Ruan Dexin, Huang Jigui, Mao Anlu. Estimation of transmission dynamics parameters for Omicron BA.5.2 variant—based on real-world data[J]. Disease Surveillance, 2023, 38(4): 457-461. doi: 10.3784/jbjc.202211090483

基于真实世界数据奥密克戎BA.5.2变异株传播动力学参数估算

doi: 10.3784/jbjc.202211090483
基金项目: 荆州市2021年度医疗卫生科技计划项目(No. 2021HC20)
详细信息
    作者简介:

    刘天,男,湖北省荆州市人,主管医师,主要从事急性传染病防制工作,Email:jzcdclt@163.com

    通讯作者:

    毛安禄,Tel:0716−8100252,Email:jzcrbs@163.com

  • 中图分类号: R211; R183

Estimation of transmission dynamics parameters for Omicron BA.5.2 variant—based on real-world data

Funds: This study was supported by Jingzhou 2021 Medical and Health Science and Technology Plan Project (No. 2021HC20)
More Information
  • 摘要:   目的  利用湖北省荆州市2起由奥密克戎BA.5.2变异株引起的局部疫情数据,估算奥密克戎BA.5.2变异株的传播动力学参数,为认识奥密克戎BA.5.2变异株传播能力提供科学依据。  方法  采用自行设计表格收集2起疫情中感染关系明确的感染者与被感染者的感染时间、发病时间及首次核酸阳性采样时间等数据。 对获得数据分别拟合对数正态分布、伽马分布和伽马分布计算潜伏期、世代间隔(GT)、代际间隔(SI)。 分别采用指数增长模型(EG)和极大似然估计法(ML)计算基本再生数(R0),取R2较大者作为R0估算值。  结果  荆州市2起疫情中,疫情A为外市来荆人员在荆州市进行社交活动引起,主要通过同住、同餐、同娱乐和同工作传播,为常见社交传播情形;疫情B涉及人群聚集的批发市场,首发病例进入后停留3 h后随即离开,在农贸市场快速传播并外溢至同住人员,为人群密集场所传播情形。 2起疫情共计纳入感染者与被感染者39对52例的数据用于潜伏期、GT和SI估算。 潜伏期中位数为2.52 d(44例,1.32~4.84 d),SI中位数为2.13 d(37例,1.63~2.64 d),GT中位数为1.91 d(21例,1.05~3.15 d)。 疫情A、疫情B最优拟合模型均为EG模型,对应R2分别为0.62、0.88。疫情A、疫情B拟合的R0分别为5.33(95%CI:2.08~13.44)、22.58(95%CI:7.23~91.36)。 单次暴露感染者观察到暴露至检出最短时间为20~21 h。  结论  奥密克戎BA.5.2变异株具有潜伏期短、传播速度快、传染性强的特点。 在人群密集场所,奥密克戎BA.5.2变异株传播能力极强。
  • 图  1  2022年荆州市奥密克戎BA.5.2变异株疫情A和疫情B的有效再生数估计

    Figure  1.  Estimated effective reproduction number of Omicron BA.5.2 variant in outbreaks A and B in Jingzhou, 2022

    表  1  奥密克戎BA.5.2变异株潜伏期、世代间隔和代际间隔计算结果

    Table  1.   Calculation results of incubation period, GT and SI of Omicron BA.5.2 variant

     参数对子数
    (对)
    中位数(d)第2.5百分位(d)第97.5百分位(d)
    潜伏期442.521.324.84
    世代间隔211.911.053.15
    代际间隔372.131.632.64
    代际间隔标准差371.691.152.01
    下载: 导出CSV

    表  2  疫情A和疫情B的基本再生数和倍增时间估计

    Table  2.   R0 and doubling time estimates for outbreak A and outbreak B

    情形模型R095%CI指数增长率r95%CI倍增时间(d)95%CIR2
    疫情A EG 5.33 2.08~13.44 0.73 0.28~1.26 0.95 0.55~2.45 0.62
    ML 3.95 1.90~7.12 0.30
    疫情B EG 22.58 7.23~91.36 1.59 0.90~2.56 0.44 0.27~0.77 0.88
    ML 12.32 6.05~21.90 0.87
    注:EG. 指数增长模型;ML. 极大似然估计法;R0. 基本再生数;CI. 置信区间;−表示无数据
    下载: 导出CSV
  • [1] World Health Organization. WHO coronavirus (COVID-19) dashboard [EB/OL]. (2022-10-25)[2022-10-27]. https://covid19.who.int/.
    [2] World Health Organization. WHO director-general's opening remarks at the media briefing on COVID-19[EB/OL]. (2020-03-11)[2022/10/27].https://www.who.int/director-general/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19---11-march-2020.
    [3] Li Q, Guan XH, Wu P, et al. Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia[J]. N Engl J Med, 2020, 382(13): 1199–1207. DOI:  10.1056/NEJMoa2001316.
    [4] Liu T, Qi L, Yao ML, et al. Serial interval and reproductive number of COVID-19 among 116 infector-infectee Pairs - Jingzhou city, Hubei province, China, 2020[J]. China CDC Wkly, 2020, 2(27): 491–495. DOI:  10.46234/ccdcw2020.118.
    [5] Singhal T. The emergence of omicron: challenging times are here again![J]. Indian J Pediatr, 2022, 89(5): 490–496. DOI: 10.1007/s12098−022−04077−4.
    [6] Tian DD, Sun YH, Xu HH, et al. The emergence and epidemic characteristics of the highly mutated SARS-CoV-2 omicron variant[J]. J Med Virol, 2022, 94(6): 2376–2383. DOI:  10.1002/jmv.27643.
    [7] Shrestha LB, Foster C, Rawlinson W, et al. Evolution of the SARS-CoV-2 omicron variants BA. 1 to BA. 5: implications for immune escape and transmission[J]. Rev Med Virol, 2022, 32(5): e2381. DOI:  10.1002/rmv.2381.
    [8] Jiang H, Wu CC, Xu WB, et al. First imported case of SARS-CoV-2 omicron subvariant BA. 5 - Shanghai Municipality, China, May 13, 2022[J]. China CDC Wkly, 2022, 4(30): 665–666. DOI:  10.46234/ccdcw2022.104.
    [9] Feng ZM, Shen Y, Li S, et al. The first outbreak of omicron subvariant BA. 5.2 - Beijing Municipality, China, July 4, 2022[J]. China CDC Wkly, 2022, 4(30): 667–668. DOI:  10.46234/ccdcw2022.136.
    [10] 国务院应对新型冠状病毒肺炎疫情联防联控机制综合组. 新型冠状病毒肺炎防控方案(第九版)[J]. 中国病毒病杂志,2022,12(5):331–338. DOI:10.16505/j.2095−0136.2022.0049.

    The Joint Prevention and Control Mechanism Group of the State Council to COVID-19. Guidelines for prevention and control of coronavirus disease 2019 (Ninth Edition)[J]. Chin J Viral Dis, 2022, 12(5): 331–338. DOI: 10.16505/j.2095−0136.2022.0049.
    [11] Reich NG, Lessler J, Cummings DAT, et al. Estimating incubation period distributions with coarse data[J]. Stat Med, 2009, 28(22): 2769–2784. DOI:  10.1002/sim.3659.
    [12] Virlogeux V, Fang VJ, Wu JT, et al. Brief report: incubation period duration and severity of clinical disease following severe acute respiratory syndrome coronavirus infection[J]. Epidemiology, 2015, 26(5): 666–669. DOI:  10.1097/EDE.0000000000000339.
    [13] Lauer SA, Grantz KH, Bi QF, et al. The incubation period of coronavirus disease 2019 (COVID-19) from publicly reported confirmed cases: estimation and application[J]. Ann Intern Med, 2020, 172(9): 577–582. DOI: 10.7326/M20−0504.
    [14] Lau YC, Tsang TK, Kennedy-Shaffer L, et al. Joint estimation of generation time and incubation period for coronavirus disease 2019[J]. J Infect Dis, 2021, 224(10): 1664–1671. DOI:  10.1093/infdis/jiab424.
    [15] Ganyani T, Kremer C, Chen DX, et al. Estimating the generation interval for coronavirus disease (COVID-19) based on symptom onset data, March 2020[J]. Euro Surveill, 2020, 25(17): 2000257. DOI: 10.2807/1560−7917.ES.2020.25.17.2000257.
    [16] 刘天, 侯清波, 姚梦雷, 等. 传染病暴发疫情中传播动力学参数计算及疫情规模预测实现——基于R[J]. 疾病监测,2022,37(9):1211–1215. DOI: 10.3784/jbjc.202111170600.

    Liu T, Hou QB, Yao ML, et al. Calculation of transmission dynamics parameters and prediction of epidemic size in infectious disease outbreak—based on software R[J]. Dis Surveill, 2022, 37(9): 1211–1215. DOI:  10.3784/jbjc.202111170600.
    [17] Obadia T, Haneef R, Boëlle PY. The R0 package: a toolbox to estimate reproduction numbers for epidemic outbreaks[J]. BMC Med Inform Decis Mak, 2012, 12: 147. DOI: 10.1186/1472−6947−12−147.
    [18] Ferretti L, Wymant C, Kendall M, et al. Quantifying SARS-CoV-2 transmission suggests epidemic control with digital contact tracing[J]. Science, 2020, 368(6491). DOI:  10.1126/science.abb6936.
    [19] Du ZW, Hong HP, Wang SQ, et al. Reproduction number of the omicron variant triples that of the delta variant[J]. Viruses, 2022, 14(4): 821. DOI:  10.3390/v14040821.
    [20] Liu Y, Rocklöv J. The effective reproductive number of the omicron variant of SARS-CoV-2 is several times relative to delta[J]. J Travel Med, 2022, 29(3): taac037. DOI:  10.1093/jtm/taac037.
    [21] Nishiura H, Ito K, Anzai A, et al. Relative reproduction number of SARS-CoV-2 omicron (B. 1.1. 529) compared with delta variant in South Africa[J]. J Clin Med, 2021, 11(1): 30. DOI:  10.3390/jcm11010030.
    [22] Niu Y, Luo L, Yang ST, et al. Comparison of epidemiological characteristics and transmissibility of different strains of COVID-19 based on the incidence data of all local outbreaks in China as of March 1, 2022[J]. Front Public Health, 2022, 10: 949594. DOI:  10.3389/fpubh.2022.949594.
    [23] Delamater PL, Street EJ, Leslie TF, et al. Complexity of the basic reproduction number (R0)[J]. Emerg Infect Dis, 2019, 25(1): 1–4. DOI:  10.3201/eid2501.171901.
    [24] 黄森忠, 魏凤英, 彭志行, 等. 常态化防控下新型冠状病毒肺炎新发疫情研判方法[J]. 疾病监测,2020,35(8):679–686. DOI:10.3784/j.issn.1003−9961.2020.08.004.

    Huang SZ, Wei FY, Peng ZX, et al. Assessment method of coronavirus disease 2019 outbreaks under normal prevention and control[J]. Dis Surveill, 2020, 35(8): 679–686. DOI: 10.3784/j.issn.1003−9961.2020.08.004.
    [25] Cao YL, Yisimayi A, Jian FC, et al. BA. 2.12. 1, BA. 4 and BA. 5 escape antibodies elicited by omicron infection[J]. Nature, 2022, 608(7923): 593–602. DOI: 10.1038/s41586−022−04980−y.
    [26] Ruan F, Zhang XB, Xiao SJ, et al. An outbreak of the SARS-CoV-2 omicron variant BA. 1 - Zhuhai city, Guangdong province, China, January 13, 2022[J]. China CDC Wkly, 2022, 4(30): 669–671. DOI:  10.46234/ccdcw2022.032.
  • 加载中
图(1) / 表(2)
计量
  • 文章访问数:  570
  • HTML全文浏览量:  218
  • PDF下载量:  74
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-09
  • 网络出版日期:  2023-03-17
  • 刊出日期:  2023-04-30

目录

    /

    返回文章
    返回

    在线交流

    防诈骗公告

    大家好:近期有不法分子以本刊编辑身份添加作者微信,请务必提高警惕!本刊关于稿件的一切事项通知均采用编辑部唯一邮箱(jbjc@icdc.cn)和座机(010-58900732)联系作者,且在录用稿件后仅收取版面费,无其他任何名目费用(如审稿费和加急费等),非编辑部邮箱发送的本刊收费用通知等均为诈骗,不要随意汇入款项!如有可疑及时致电编辑部核实确认!