-
摘要:
目的 探索中国施万菌的种群分布、分子流行病学特征及遗传进化关系,为施万菌的流行病学监测和进化研究提供依据。 方法 利用基质辅助激光解吸电离–飞行时间质谱(MALDI-TOF MS)联合gyrB基因测序进行施万菌种水平鉴定;利用7个管家基因(16S rRNA、gyrA、gyrB、infB、recN、rpoA和topA)进行多位点序列分型(MLST),利用BioNumerics 7.1软件对各个序列类型(ST)构建最小生成树。 结果 本研究共收集全国201株施万菌,鉴定到10个不同的菌种,其中海藻施万菌所占数量最多。 不同分离来源中的施万菌种分布有所差异,临床和食品来源的施万菌种分布相似。 MLST将施万菌实验室分离株划分成136个ST型和15 个克隆复合体(CCs),其中CC12为海藻施万菌优势克隆群。 结论 我国分布的施万菌病原谱丰富多样,提示这些菌株具有高度的遗传多样性。 Abstract:Objective To explore the distribution and molecular epidemiological characteristics genetic evolution of Shewanella in China and provide evidence for epidemiological surveillance and evolution research of Shewanella. Methods The identification of Shewanella species was performed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) combined with gyrB gene sequencing. Multilocus sequence typing (MLST) was performed using seven housekeeping genes (16S rRNA, gyrA, gyrB, infB, recN, rpoA and topA). A minimal spanning tree was constructed for each sequence type (ST) by using software BioNumerics 7.1. Results The 201 Shewanella isolates collected in China were identified as 10 different species, with S. algae accounting for the largest proportion. There were differences in the distribution of Shewanella among the isolated from different sources, the distribution of S. algae from clinical and food sources was similar. MLST can classified the Shewanella isolates into 136 STs, clonal complex 12 (CC12) was the dominant clonal complexes of S. algae. Conclusion The rich pathogenic spectrum of Shewanella distributed in China suggests that the genetic diversity of these strains is high. -
Key words:
- Shewanella /
- Population distribution /
- Molecular typing /
- Genetic diversity
-
表 1 多位点序列分析管家基因引物序列信息表
Table 1. Summary of housekeeping genes primer sequences in multilocus sequence typing
基因名称 引物名称 引物序列 (5'~3') 退火温度 (℃) 扩增长度(bp) 16S rRNA 8F AGAGTTTGATCCTGGCTCAG 50 1414 1492R GGTTACCTTGTTACGACTT gyrA gyrA-F TGAAGAACGATTGGAACAARCCNTAYAARAARTC 56 664 gyrA-R TTTTCAATCAAACGAGCTTTGTTHACYTGRTAHGG gyrB gyrB-F GAAGTGGCKATGCAGTGGAA 56 627 gyrB-R CGRCRAATACCACAGCCRAG infB infB-F ATGCCACAGACTATTGAAGCDATYCARCAYGC 56 830 infB-R GCATCAGCACGAACGTTAAARCCNAYMAKRATNGC recN recN-F AGTGAGCATCAACTGACCYTRYTNGAYAGYTAYGC 54 863 recN-R GGTTGTAAAGGTTGCCCTGGGTTDGTNSWNAC rpoA rpoA-F TGGAGCCGCTTGAGCGTGGTTTYGGHCAYAC 56 751 rpoA-R ATGTAATGAATCGCTTCGGCYTTYARRCAGTT topA topA-F GAATTCATCGTTAAGTCGAGYGTDGGBCAYRT 60 860 topA-R CGCTGGGCCATCATCATGGTYTTYTTNACNCC -
[1] Yu KY, Huang ZZ, Xiao Y, et al. Shewanella infection in humans: Epidemiology, clinical features and pathogenicity[J]. Virulence, 2022, 13(1): 1515–1532. DOI: 10.1080/21505594.2022.2117831. [2] MacDonell MT, Colwell RR. Phylogeny of the Vibrionaceae, and recommendation for two new genera, Listonella and Shewanella[J]. Syst Appl Microbiol, 1985, 6(2): 171–182. DOI: 10.1016/S0723−2020(85)80051−5. [3] Yousfi K, Bekal S, Usongo V, et al. Current trends of human infections and antibiotic resistance of the genus Shewanella[J]. Eur J Clin Microbiol Infect Dis, 2017, 36(8): 1353–1362. DOI: 10.1007/s10096−017−2962−3. [4] Ng WWS, Shum HP, To KKW, et al. Emerging infections due to Shewanella spp. : a case series of 128 cases over 10 years[J]. Front Med, 2022, 9: 850938. DOI: 10.3389/fmed.2022.850938. [5] Chia-Wei L, Cheng JF, Tung KC, et al. Evolution of trimethoprim/sulfamethoxazole resistance in Shewanella algae from the perspective of comparative genomics and global phylogenic analysis[J]. J Microbiol Immunol Infect, 2022, 55(6 Pt 2): 1195–1202. DOI: 10.1016/j.jmii.2021.09.014. [6] Holt HM, Gahrn-Hansen B, Bruun B. Shewanella algae and Shewanella putrefaciens: clinical and microbiological characteristics[J]. Clin Microbiol Infect, 2005, 11(5): 347–352. DOI: 10.1111/j.1469−0691.2005.01108.x. [7] Antonelli A, Di Palo DM, Galano A, et al. Intestinal carriage of Shewanella xiamenensis simulating carriage of OXA-48-producing enterobacteriaceae[J]. Diagn Microbiol Infect Dis, 2015, 82(1): 1–3. DOI: 10.1016/j.diagmicrobio.2015.02.008. [8] Zong ZY. Nosocomial peripancreatic infection associated with Shewanella xiamenensis[J]. J Med Microbiol, 2011, 60(Pt 9): 1387–1390. DOI: 10.1099/jmm.0.031625-0. [9] Janda JM, Abbott SL. The genus Shewanella: from the briny depths below to human pathogen[J]. Crit Rev Microbiol, 2014, 40(4): 293–312. DOI: 10.3109/1040841X.2012.726209. [10] Sterniša M, Bucar F, Kunert O, et al. Targeting fish spoilers Pseudomonas and Shewanella with oregano and nettle extracts[J]. Int J Food Microbiol, 2020, 328: 108664. DOI: 10.1016/j.ijfoodmicro.2020.108664. [11] Martín-Rodríguez AJ, Suárez-Mesa A, Artiles-Campelo F, et al. Multilocus sequence typing of Shewanella algae isolates identifies disease-causing Shewanella chilikensis strain 6I4[J]. FEMS Microbiol Ecol, 2019, 95(1): fiy210. DOI: 10.1093/femsec/fiy210. [12] Maiden MCJ. Multilocus sequence typing of bacteria[J]. Annu Rev Microbiol, 2006, 60: 561–588. DOI: 10.1146/annurev.micro.59.030804.121325. [13] Fang YJ, Wang YL, Liu ZD, et al. Multilocus sequence analysis, a rapid and accurate tool for taxonomic classification, evolutionary relationship determination, and population biology studies of the genus Shewanella[J]. Appl Environ Microbiol, 2019, 85(11): e03126–18. DOI: 10.1128/AEM.03126−18. [14] Yu KY, Huang ZZ, Li Y, et al. Establishment and application of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry for detection of Shewanella genus[J]. Front Microbiol, 2021, 12: 625821. DOI: 10.3389/fmicb.2021.625821. [15] 蔡红艳, 方玉洁, 于可艺, 等. 基于16S rRNA和gyrB基因的施万菌种水平鉴定分析[J]. 疾病监测,2021,36(1):42–47. DOI: 10.3784/jbjc.202007130239.Cai HY, Fang YJ, Yu KY, et al. Identification of Shewanella at species level based on16S rRNA and gyrB genes[J]. Dis Surveill, 2021, 36(1): 42–47. DOI: 10.3784/jbjc.202007130239. [16] Lemaire ON, Mejean V, Iobbi-Nivol C. The Shewanella genus: ubiquitous organisms sustaining and preserving aquatic ecosystems[J]. FEMS Microbiol Rev, 2020, 44(2): 155–170. DOI: 10.1093/femsre/fuz031. [17] Maiden MCJ, Bygraves JA, Feil E, et al. Multilocus sequence typing: a portable approach to the identification of clones within populations of pathogenic microorganisms[J]. Proc Natl Acad Sci USA, 1998, 95(6): 3140–3145. DOI: 10.1073/pnas.95.6.3140. [18] Gogarten JP, Doolittle WF, Lawrence JG. Prokaryotic evolution in light of gene transfer[J]. Mol Biol Evol, 2002, 19(12): 2226–2238. DOI: 10.1093/oxfordjournals.molbev.a004046. -