2018年广东省广州市鸡源和猪源鼠伤寒沙门菌耐药性及分子特征分析

朱坤鹏 向莹 邱少富 杨海燕 杜昕颖

朱坤鹏, 向莹, 邱少富, 杨海燕, 杜昕颖. 2018年广东省广州市鸡源和猪源鼠伤寒沙门菌耐药性及分子特征分析[J]. 疾病监测. doi: 10.3784/jbjc.202302150043
引用本文: 朱坤鹏, 向莹, 邱少富, 杨海燕, 杜昕颖. 2018年广东省广州市鸡源和猪源鼠伤寒沙门菌耐药性及分子特征分析[J]. 疾病监测. doi: 10.3784/jbjc.202302150043
Zhu Kunpeng, Xiang Ying, Qiu Shaofu, Yang Haiyan, Du Xinying. Antibiotic resistance and molecular characteristics of Salmonella Typhimurium isolated from chicken and pork in Guangzhou, Guangdong in 2018[J]. Disease Surveillance. doi: 10.3784/jbjc.202302150043
Citation: Zhu Kunpeng, Xiang Ying, Qiu Shaofu, Yang Haiyan, Du Xinying. Antibiotic resistance and molecular characteristics of Salmonella Typhimurium isolated from chicken and pork in Guangzhou, Guangdong in 2018[J]. Disease Surveillance. doi: 10.3784/jbjc.202302150043

2018年广东省广州市鸡源和猪源鼠伤寒沙门菌耐药性及分子特征分析

doi: 10.3784/jbjc.202302150043
基金项目: 国家自然科学基金 (No. 82173580,No. 82202538,No. 81873968)
详细信息
    作者简介:

    朱坤鹏,男,河南省商丘市人,硕士研究生在读,主要从事疾病预防控制工作,Email:zkpzkpzkp2000@163.com

    通讯作者:

    杨海燕,Tel:13592602629,Email:yhy@zzu.edu.cn

    杜昕颖,Tel:13611082955,Email:dxy7403@163.com

  • 中图分类号: R211; R378

Antibiotic resistance and molecular characteristics of Salmonella Typhimurium isolated from chicken and pork in Guangzhou, Guangdong in 2018

Funds: This study were supported by the National Natural Science Foundation of China (No. 82173580, No. 82202538, No. 81873968)
More Information
  • 摘要:   目的  调查2018年广州市鸡源和猪源鼠伤寒沙门菌的耐药性及分子特征,为合理使用抗生素和耐药菌防控提供依据。  方法  使用API 20E生化试验鉴定鼠伤寒沙门菌。 使用CMV3AGNF药敏板进行药敏试验。 利用Illumina Miseq测序平台进行全基因组测序,分析序列类型、抗生素耐药基因和点突变,以及构建系统发育树。  结果  广州市鸡源(15株)和猪源(21株)鼠伤寒沙门菌对氨苄青霉素、萘啶酸、四环素、氯霉素和磺胺异恶唑的耐药率≥60.00%,多重耐药率超过65.00%,以氨苄西林-萘啶酸-四环索-氯霉素-(甲氧苄氨嘧啶/磺胺甲恶唑-磺胺异恶唑)-庆大霉素耐药谱为主,且猪源菌耐药更为严重。 猪源菌对tet(B)aph(3'')-Ibaph(6)-Id的携带率高于鸡源菌(P<0.05),携带更多的耐药基因(P<0.05)。 GyrA点突变在鸡源菌和猪源菌的分布差异无统计学意义。 系统发育及序列类型分析发现,鼠伤寒沙门菌共分为4个分支,鸡源菌更具遗传多态性,C4优势分支同时包含鸡源菌和猪源菌。  结论  鼠伤寒沙门菌耐药普遍,猪源菌的耐药则更为严重。畜牧业应合理使用抗生素,应加强鼠伤寒沙门菌的病原监测尤其是对猪肉食品的监测,防控耐药菌的传播。
  • 图  1  鸡源和猪源鼠伤寒沙门菌系统发育树

    注:QRDR. 喹诺酮耐药决定区,CRO. 头孢曲松,FOX. 头孢西丁,XNL. 头孢噻呋,AMP. 氨苄西林,AUG-2. 阿莫西林/克拉维酸,CIP. 环丙沙星,NAL. 萘啶酸,AZI. 阿奇霉素,TET. 四环素,CHL. 氯霉素,SXT. 甲氧苄氨嘧啶/磺胺甲恶唑,FIS. 磺胺异恶唑,GEN. 庆大霉素,STR. 链霉素,ST. 序列类型

    Figure  1.  The phylogenetic tree of S. Typhimurium strains of chicken and pork

    表  1  鸡源和猪源鼠伤寒沙门菌抗生素耐药率

    Table  1.   Antibiotic resistance rates of S. Typhimurium strains of chicken and pork

     抗生素鸡源(n=15)猪源(n=21)P
    耐药
    株数
    耐药率
    (%)
    耐药
    株数
    耐药率
    (%)
    β-内酰胺类
     头孢曲松 1 6.67 3 14.29 0.858
     头孢西丁 0 0.00 0 0.00
     头孢噻呋 1 6.67 3 14.29 0.858
     氨苄青霉素 10 66.67 18 85.71 0.343
     阿莫西林/克拉维酸 1 6.67 0 0.00 0.864
    喹诺酮类
     环丙沙星 0 0.00 0 0.00
     萘啶酸 11 73.33 14 66.67 0.951
    大环内酯类
     阿奇霉素 0 0.00 2 9.52 0.623
    四环素类
     四环素 9 60.00 21 100.00 0.007
    氯霉素类
     氯霉素 9 60.00 14 66.67 0.953
    磺胺类
     甲氧苄氨嘧啶/磺胺
     甲恶唑
    7 46.67 12 57.14 0.778
     磺胺异恶唑 10 66.67 20 95.24 0.070
    氨基糖苷类
     庆大霉素 7 46.67 9 42.86 1.000
     链霉素 4 26.67 13 61.90 0.080
    注:–. 不符合检验条件,未统计检验
    下载: 导出CSV

    表  2  鸡源和猪源鼠伤寒沙门菌耐药谱

    Table  2.   Antibiotic resistance patterns of S. Typhimurium strains of chicken and pork

    来源耐药种类耐药谱菌株数耐药率(%)合计a
    鸡源 13 (86.67)
    1 3 (20.00)
    TET 2 13.33
    NAL 1 6.67
    5 4 (26.67)
    (CRO-XNL-AMP)-NAL-CHL-FIS-GEN 1 6.67
    (AMP-AUG-2)-NAL-CHL-(SXT-FIS)-GEN 1 6.67
    AMP-NAL-CHL-(SXT-FIS)-GEN 1 6.67
    AMP-NAL-TET-FIS-STR 1 6.67
    6 6 (40.00)
    AMP-NAL-TET-CHL-(SXT-FIS)-GEN 3 20.00
    AMP-NAL-TET-CHL-(SXT-FIS)-STR 2 13.33
    AMP-NAL-TET-CHL-FIS-(GEN-STR) 1 6.67
    猪源 21 (100.00)
    3 TET-FIS-STR 1 4.76 1 (4.76)
    4 8 (38.10)
    AMP-TET-FIS-STR 3 14.29
    (CRO-XNL-AMP)-TET-FIS-STR 2 9.52
    (CRO-XNL-AMP)-TET-CHL-(SXT-FIS) 1 4.76
    NAL-AZI-TET-CHL 1 4.76
    AMP-NAL-TET-FIS 1 4.76
    (CRO-XNL-AMP)-TET-CHL-(SXT-FIS) 1 4.76
    5 NAL-TET-CHL-(SXT-FIS)-(GEN-STR) 1 4.76 1 (4.76)
    6 10 (47.62)
    AMP-NAL-TET-CHL-(SXT-FIS)-GEN 5 23.81
    AMP-NAL-TET-CHL-(SXT-FIS)-(GEN-STR) 3 14.29
    AMP-NAL-TET-CHL-(SXT-FIS)-STR 2 9.52
      7 AMP-NAL-AZI-TET-CHL-FIS-STR 1 4.76 1 (4.76)
    注:CRO. 头孢曲松;XNL. 头孢噻呋;AMP. 氨苄西林;AUG-2. 阿莫西林/克拉维酸;TET. 四环素;GEN. 庆大霉素;STR. 链霉素;CHL. 氯霉素;NAL. 萘啶酸;SXT. 甲氧苄氨嘧啶/磺胺甲恶唑;FIS. 磺胺异恶唑;AZI. 阿奇霉素
    下载: 导出CSV

    表  3  鸡源和猪源鼠伤寒沙门菌序列类型

    Table  3.   Sequence types of S. Typhimurium strains of chicken and pork

    序列类型鸡源(n=15) 猪源(n=21)
    株数率(%)株数率(%)
    ST19320.00 14.76
    ST34960.002095.24
    ST3616.6700.00
    ST99213.3300.00
    注:ST. 序列类型
    下载: 导出CSV

    表  4  鸡源和猪源鼠伤寒沙门菌耐药基因及点突变

    Table  4.   Antibiotic resistance genes and point mutations of S. Typhimurium strains of chicken and pork

    耐药基因/点突变鸡源(n=15)猪源(n=21)P
    株数率(%)株数率(%)
    超广谱β-内酰胺类
     blaCTX-M-27 1 6.67 0 0.00 0.864
     blaCTX-M-55 0 0.00 2 9.52 0.623
     blaOXA-1 4 26.67 6 28.57 1.000
     blaTEM-1 2 13.33 10 47.62 0.073
    喹诺酮类
     aac(6')-Ib-cr 4 26.67 6 28.57 1.000
     oqxA 4 26.67 9 42.86 0.519
     oqxB 4 26.67 9 42.86 0.519
     qnrS1 0 0.00 2 9.52 0.623
     qnrS2 0 0.00 1 4.76 1.000
    四环素类
     tet(B) 4 26.67 17 80.95 0.004
     tet(M) 0 0.00 3 14.29 0.359
    氯霉素类
     catB3 4 26.67 6 28.57 1.000
     cmlA1 5 33.33 11 52.38 0.427
     floR 5 33.33 10 47.62 0.607
    磺胺类
     dfrA12 5 33.33 10 47.62 0.607
     sul1 5 33.33 8 38.10 1.000
     sul2 6 40.00 16 76.19 0.064
     sul3 5 33.33 9 42.86 0.817
    氨基糖苷类耐药基因
     aac(2')-IIa 2 13.33 0 0.00 0.325
     aac(3)-IId 1 6.67 0 0.00 0.864
     aac(3)-IV 5 33.33 9 42.86 0.817
     aac(6')-Iaa 15 100.00 21 100.00
     aac(6')-Ib7 1 6.67 0 0.00 0.864
     aadA2 0 0.00 3 14.29 0.359
     ant(3'')-IIa 5 33.33 11 52.38 0.427
     aph(3')-Ia 5 33.33 8 38.10 1.000
     aph(3'')-Ib 2 13.33 11 52.38 0.040
     aph(4)-Ia 5 33.33 9 42.86 0.817
     aph(6)-Id 2 13.33 11 52.38 0.040
    QRDR点突变
     gyrA S83F 1 6.67 1 4.76 1.000
     gyrA D87N 6 40.00 5 23.81 0.501
     gyrA D87Y 1 6.67 7 33.33 0.136
    注:–. 不符合检验条件,未统计检验,QRDR. 喹诺酮耐药决定区
    下载: 导出CSV

    表  5  鸡源和猪源鼠伤寒沙门菌抗生素耐药与耐药基因携带关系

    Table  5.   Relationship of antimicrobial susceptibility with antimicrobial resistance genes of S. Typhimurium strains of chicken and pork

      抗生素表型耐药数
    (株)
    表型不耐药数
    (株)
    基因
    阳性
    基因
    阴性
    基因
    阳性
    基因
    阴性
    β-内酰胺类
     头孢曲松 3 1 19 13
     头孢西丁 0 0 22 14
     头孢噻呋 3 1 19 13
     氨苄青霉素 18 10 4 4
     阿莫西林/克拉维酸 0 1 22 13
    喹诺酮类
     环丙沙星 0 0 17 19
     萘啶酸 13 12 4 7
    大环内酯类
     阿奇霉素 0 2 0 34
    四环素类
     四环素 18 12 3 3
    氯霉素类
     氯霉素 13 10 5 8
    磺胺类
     甲氧苄氨嘧啶/磺胺甲恶唑 19 0 17 0
     磺胺异恶唑 30 0 6 0
    氨基糖苷类
     庆大霉素 9 7 15 5
     链霉素 14 3 10 9
    下载: 导出CSV
  • [1] Tobolowsky FA, Cui ZH, Hoekstra RM, et al. Salmonella serotypes associated with illnesses after Thanksgiving Holiday, United States, 1998−2018[J]. Emerg Infect Dis, 2022, 28(1): 210–213. DOI:  10.3201/eid2801.211986.
    [2] Hendriksen RS, Vieira AR, Karlsmose S, et al. Global monitoring of Salmonella serovar distribution from the World Health Organization Global Foodborne Infections Network Country Data Bank: results of quality assured laboratories from 2001 to 2007[J]. Foodborne Pathog Dis, 2011, 8(8): 887–900. DOI:  10.1089/fpd.2010.0787.
    [3] Ran L, Wu SY, Gao YJ, et al. Laboratory-based surveillance of nontyphoidal Salmonella infections in China[J]. Foodborne Pathog Dis, 2011, 8(8): 921–927. DOI:  10.1089/fpd.2010.0827.
    [4] Li YL, Yang QP, Cao CY, et al. Prevalence and characteristics of Salmonella isolates recovered from retail raw chickens in Shaanxi province, China[J]. Poult Sci, 2020, 99(11): 6031–6044. DOI:  10.1016/j.psj.2020.07.038.
    [5] Wall PG, Threllfall EJ, Ward LR, et al. Multiresistant Salmonella typhimurium DT104 in cats: a public health risk[J]. Lancet, 1996, 348(9025): 471. DOI: 10.1016/S0140−6736(96)24033−4.
    [6] Wang XC, Biswas S, Paudyal N, et al. Antibiotic resistance in Salmonella Typhimurium isolates recovered from the food chain through national antimicrobial resistance monitoring system between 1996 and 2016[J]. Front Microbiol, 2019, 10: 985. DOI:  10.3389/fmicb.2019.00985.
    [7] Chen KC, Yang C, Chan EW, et al. Emergence of conjugative IncC type plasmid simultaneously encoding resistance to ciprofloxacin, ceftriaxone, and azithromycin in Salmonella[J]. Antimicrob Agents Chemother, 2021, 65(9): e0104621. DOI: 10.1128/AAC.01046−21.
    [8] Ellington MJ, Ekelund O, Aarestrup FM, et al. The role of whole genome sequencing in antimicrobial susceptibility testing of bacteria: report from the EUCAST Subcommittee[J]. Clin Microbiol Infect, 2017, 23(1): 2–22. DOI:  10.1016/j.cmi.2016.11.012.
    [9] Diep B, Barretto C, Portmann AC, et al. Salmonella Serotyping; comparison of the traditional method to a microarray-based method and an in silico platform using whole genome sequencing data[J]. Front Microbiol, 2019, 10: 2554. DOI:  10.3389/fmicb.2019.02554.
    [10] Zhang LN, Fu Y, Xiong ZY, et al. Highly prevalent multidrug-resistant Salmonella from chicken and pork meat at retail markets in Guangdong, China[J]. Front Microbiol, 2018, 9: 2104. DOI:  10.3389/fmicb.2018.02104.
    [11] Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data[J]. Bioinformatics, 2014, 30(15): 2114–2120. DOI:  10.1093/bioinformatics/btu170.
    [12] Bankevich A, Nurk S, Antipov D, et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing[J]. J Comput Biol, 2012, 19(5): 455–477. DOI:  10.1089/cmb.2012.0021.
    [13] McClelland M, Sanderson KE, Spieth J, et al. Complete genome sequence of Salmonella enterica serovar Typhimurium LT2[J]. Nature, 2001, 413(6858): 852–856. DOI:  10.1038/35101614.
    [14] Li H, Handsaker B, Wysoker A, et al. The sequence alignment/map format and SAMtools[J]. Bioinformatics, 2009, 25(16): 2078–2079. DOI:  10.1093/bioinformatics/btp352.
    [15] Garrison E, Marth G. Haplotype-based variant detection from short-read sequencing[EB/OL]. (2012-07-20)[2023-02-15]. https://arxiv.org/abs/1207.3907.
    [16] Croucher NJ, Page AJ, Connor TR, et al. Rapid phylogenetic analysis of large samples of recombinant bacterial whole genome sequences using Gubbins[J]. Nucl Acids Res, 2015, 43(3): e15. DOI:  10.1093/nar/gku1196.
    [17] Page AJ, Taylor B, Delaney AJ, et al. SNP-sites: rapid efficient extraction of SNPs from multi-FASTA alignments[J]. Microb Genom, 2016, 2(4): e000056. DOI:  10.1099/mgen.0.000056.
    [18] Nguyen LT, Schmidt HA, von Haeseler A, et al. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies[J]. Mol Biol Evol, 2015, 32(1): 268–274. DOI:  10.1093/molbev/msu300.
    [19] McArthur AG, Waglechner N, Nizam F, et al. The comprehensive antibiotic resistance database[J]. Antimicrob Agents Chemother, 2013, 57(7): 3348–3357. DOI: 10.1128/AAC.00419−13.
    [20] Proroga YTR, Mancusi A, Peruzy MF, et al. Characterization of Salmonella Typhimurium and its monophasic variant 1, 4, [5], 12: i: -isolated from different sources[J]. Folia Microbiol, 2019, 64(6): 711–718. DOI: 10.1007/s12223−019−00683−6.
    [21] Dong N, Li YR, Zhao JY, et al. The phenotypic and molecular characteristics of antimicrobial resistance of Salmonella enterica subsp. enterica serovar Typhimurium in Henan province, China[J]. BMC Infect Dis, 2020, 20(1): 511. DOI: 10.1186/s12879−020−05203−3.
    [22] Guo LL, Zhao YD. Global spread and molecular characterization of CTX-M-producing Salmonella Typhimurium Isolates[J]. Antibiotics, 2021, 10(11): 1417. DOI:  10.3390/antibiotics10111417.
    [23] Shang DQ, Zhao H, Xu XB, et al. Conjugative IncHI2 plasmid harboring novel class 1 integron mediated dissemination of multidrug resistance genes in Salmonella Typhimurium[J]. Food Control, 2021, 122: 107810. DOI:  10.1016/j.foodcont.2020.107810.
    [24] Lai J, Wu CM, Wu CB, et al. Serotype distribution and antibiotic resistance of Salmonella in food-producing animals in Shandong province of China, 2009 and 2012[J]. Int J Food Microbiol, 2014, 180: 30–38. DOI:  10.1016/j.ijfoodmicro.2014.03.030.
    [25] Lyu N, Feng YQ, Pan YL, et al. Genomic characterization of Salmonella Enterica isolates from retail meat in Beijing, China[J]. Front Microbiol, 2021, 12: 636332. DOI:  10.3389/fmicb.2021.636332.
    [26] Glynn MK, Bopp C, Dewitt W, et al. Emergence of multidrug-resistant Salmonella enterica serotype Typhimurium DT104 infections in the United States[J]. N Engl J Med, 1998, 338(19): 1333–1339. DOI:  10.1056/NEJM199805073381901.
    [27] Sjölund-Karlsson M, Joyce K, Blickenstaff K, et al. Antimicrobial susceptibility to azithromycin among Salmonella Enterica isolates from the United States[J]. Antimicrob Agents Chemother, 2011, 55(9): 3985–3989. DOI: 10.1128/AAC.00590−11.
    [28] McDermott PF, Tyson GH, Kabera C, et al. Whole-genome sequencing for detecting antimicrobial resistance in nontyphoidal Salmonella[J]. Antimicrob Agents Chemother, 2016, 60(9): 5515–5520. DOI: 10.1128/AAC.01030−16.
    [29] Deng XL, Ran L, Wu SY, et al. Laboratory-based surveillance of non-typhoidal Salmonella infections in Guangdong province, China[J]. Foodborne Pathog Dis, 2012, 9(4): 305–312. DOI:  10.1089/fpd.2011.1008.
    [30] Dahms C, Hübner NO, Kossow A, et al. Occurrence of ESBL-producing Escherichia coli in livestock and farm workers in Mecklenburg-western Pomerania, Germany[J]. PLoS One, 2015, 10(11): e0143326. DOI:  10.1371/journal.pone.0143326.
    [31] Qiao J, Zhang Q, Alali WQ, et al. Characterization of extended-spectrum β-lactamases (ESBLs)-producing Salmonella in retail raw chicken carcasses[J]. Int J Food Microbiol, 2017, 248: 72–81. DOI:  10.1016/j.ijfoodmicro.2017.02.016.
    [32] Jain P, Sudhanthirakodi S, Chowdhury G, et al. Antimicrobial resistance, plasmid, virulence, multilocus sequence typing and pulsed-field gel electrophoresis profiles of Salmonella Enterica serovar Typhimurium clinical and environmental isolates from India[J]. PLoS One, 2018, 13(12): e0207954. DOI:  10.1371/journal.pone.0207954.
    [33] Chen ZQ, Bai J, Zhang XB, et al. Highly prevalent multidrug resistance and QRDR mutations in Salmonella isolated from chicken, pork and duck meat in southern China, 2018-2019[J]. Int J Food Microbiol, 2021, 340: 109055. DOI:  10.1016/j.ijfoodmicro.2021.109055.
    [34] Turner AK, Nair S, Wain J. The acquisition of full fluoroquinolone resistance in Salmonella Typhi by accumulation of point mutations in the topoisomerase targets[J]. J Antimicrob Chemother, 2006, 58(4): 733–740. DOI:  10.1093/jac/dkl333.
    [35] Bawn M, Alikhan NF, Thilliez G, et al. Evolution of Salmonella enterica serotype Typhimurium driven by anthropogenic selection and niche adaptation[J]. PLoS Genet, 2020, 16(6): e1008850. DOI:  10.1371/journal.pgen.1008850.
    [36] Biswas S, Li Y, Elbediwi M, et al. Emergence and dissemination of mcr-carrying clinically relevant Salmonella Typhimurium monophasic clone ST34[J]. Microorganisms, 2019, 7(9): 298. DOI:  10.3390/microorganisms7090298.
    [37] 蒋增海, 滕霖, 贺安文, 等. 猪产业链中鼠伤寒沙门菌及沙门菌血清型4, [5], 12: i: -基因组学分析[J]. 畜牧兽医学报,2023,54(3):1199–1209. DOI:10.11843/j.issn.0366−6964.2023.03.031.

    Jiang ZH, Teng L, He AW, et al. Genomic analysis of Salmonella Typhimurium Isolates and Salmonella Serotype 4, [5], 12: i: -Isolates from Pig-borne Food Chain[J]. Acta Vet Zootech Sin, 2023, 54(3): 1199–1209. DOI: 10.11843/j.issn.0366−6964.2023.03.031.
    [38] Zhao XN, Yang J, Zhang BZ, et al. Characterization of integrons and resistance genes in Salmonella Isolates from farm animals in Shandong province, China[J]. Front Microbiol, 2017, 8: 1300. DOI:  10.3389/fmicb.2017.01300.
    [39] Elnekave E, Hong S, Mather AE, et al. Salmonella Enterica Serotype 4, [5], 12: i: - in Swine in the United States Midwest: an emerging multidrug-resistant clade[J]. Clin Infect Dis, 2018, 66(6): 877–885. DOI:  10.1093/cid/cix909.
  • 加载中
图(1) / 表(5)
计量
  • 文章访问数:  113
  • HTML全文浏览量:  50
  • PDF下载量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-15
  • 网络出版日期:  2023-04-14

目录

    /

    返回文章
    返回

    在线交流

    防诈骗公告

    大家好:近期有不法分子以本刊编辑身份添加作者微信,请务必提高警惕!本刊关于稿件的一切事项通知均采用编辑部唯一邮箱(jbjc@icdc.cn)和座机(010-58900732)联系作者,且在录用稿件后仅收取版面费,无其他任何名目费用(如审稿费和加急费等),非编辑部邮箱发送的本刊收费用通知等均为诈骗,不要随意汇入款项!如有可疑及时致电编辑部核实确认!