Antibiotic resistance and molecular characteristics of Salmonella Typhimurium isolated from chicken and pork in Guangzhou, Guangdong in 2018
-
摘要:
目的 调查2018年广州市鸡源和猪源鼠伤寒沙门菌的耐药性及分子特征,为合理使用抗生素和耐药菌防控提供依据。 方法 使用API 20E生化试验鉴定鼠伤寒沙门菌。 使用CMV3AGNF药敏板进行药敏试验。 利用Illumina Miseq测序平台进行全基因组测序,分析序列类型、抗生素耐药基因和点突变,以及构建系统发育树。 结果 广州市鸡源(15株)和猪源(21株)鼠伤寒沙门菌对氨苄青霉素、萘啶酸、四环素、氯霉素和磺胺异恶唑的耐药率≥60.00%,多重耐药率超过65.00%,以氨苄西林-萘啶酸-四环索-氯霉素-(甲氧苄氨嘧啶/磺胺甲恶唑-磺胺异恶唑)-庆大霉素耐药谱为主,且猪源菌耐药更为严重。 猪源菌对tet(B)、aph(3'')-Ib和aph(6)-Id的携带率高于鸡源菌(P<0.05),携带更多的耐药基因(P<0.05)。 GyrA点突变在鸡源菌和猪源菌的分布差异无统计学意义。 系统发育及序列类型分析发现,鼠伤寒沙门菌共分为4个分支,鸡源菌更具遗传多态性,C4优势分支同时包含鸡源菌和猪源菌。 结论 鼠伤寒沙门菌耐药普遍,猪源菌的耐药则更为严重。畜牧业应合理使用抗生素,应加强鼠伤寒沙门菌的病原监测尤其是对猪肉食品的监测,防控耐药菌的传播。 Abstract:Objective To investigate the antibiotic resistance and molecular characteristics of Salmonella Typhimurium isolated from chicken and pork in Guangzhou, 2018, and provide data support for the rational use of antibiotics and the prevention of drug-resistant pathogens. Methods The S. Typhimurium isolates were identified by using API 20E biochemical tests, and antibiotic susceptibility testing was performed by using Sensititre CMV3AGNF plates. The whole genome was sequenced by using Illumina Miseq platform to analyze sequence types (ST), antibiotic resistance genes (ARGs) and point mutations, and to construct phylogenetic tree. Results The antibiotic resistance rates of S. Typhimurium strains isolated from chicken (n=15) and pork (n=21) in Guangzhou to ampicillin, nalidixic acid, tetracycline, chloramphenicol, and sulfisoxazole were ≥60.00%, and the multi-drug resistance (MDR) rates were more than 65.00%. The ampicillin-nalidixic acid-tetracycline-chloramphenicol-(trimethoprim/sulfamethoxazole-chloramphenicol)-gentamicin was the predominant antibiotic resistance pattern, and the drug resistance of S. Typhimurium isolated from pork was more serious. The carriage rates of tet(B), aph(3")-Ib, and aph(6)-Id were higher in pork isolates than in chicken isolates, and more ARGs were found in pork isolates. There was no difference in the distribution of gyrA point mutations between isolates from chicken and pork. Phylogenetic analysis and sequence type analysis showed that the S. Typhimurium were divided into four clades. The chicken isolates were more genetically polymorphic, and the C4 dominant clades contained both isolates from chicken and pork. Conclusion The antibiotic resistance of S. Typhimurium is common, and the antibiotic resistance of the pathogen from pork is more serious. Antibiotics should be used rationally in animal husbandry. It is necessary to further strengthen the S. Typhimurium surveillance, especially in pork food, for the prevention of resistant pathogens. -
表 1 鸡源和猪源鼠伤寒沙门菌抗生素耐药率
Table 1. Antibiotic resistance rates of S. Typhimurium strains of chicken and pork
抗生素 鸡源(n=15) 猪源(n=21) P值 耐药
株数耐药率
(%)耐药
株数耐药率
(%)β-内酰胺类 头孢曲松 1 6.67 3 14.29 0.858 头孢西丁 0 0.00 0 0.00 – 头孢噻呋 1 6.67 3 14.29 0.858 氨苄青霉素 10 66.67 18 85.71 0.343 阿莫西林/克拉维酸 1 6.67 0 0.00 0.864 喹诺酮类 环丙沙星 0 0.00 0 0.00 – 萘啶酸 11 73.33 14 66.67 0.951 大环内酯类 阿奇霉素 0 0.00 2 9.52 0.623 四环素类 四环素 9 60.00 21 100.00 0.007 氯霉素类 氯霉素 9 60.00 14 66.67 0.953 磺胺类 甲氧苄氨嘧啶/磺胺
甲恶唑7 46.67 12 57.14 0.778 磺胺异恶唑 10 66.67 20 95.24 0.070 氨基糖苷类 庆大霉素 7 46.67 9 42.86 1.000 链霉素 4 26.67 13 61.90 0.080 注:–. 不符合检验条件,未统计检验 表 2 鸡源和猪源鼠伤寒沙门菌耐药谱
Table 2. Antibiotic resistance patterns of S. Typhimurium strains of chicken and pork
来源 耐药种类 耐药谱 菌株数 耐药率(%) 合计a 鸡源 13 (86.67) 1 3 (20.00) TET 2 13.33 NAL 1 6.67 5 4 (26.67) (CRO-XNL-AMP)-NAL-CHL-FIS-GEN 1 6.67 (AMP-AUG-2)-NAL-CHL-(SXT-FIS)-GEN 1 6.67 AMP-NAL-CHL-(SXT-FIS)-GEN 1 6.67 AMP-NAL-TET-FIS-STR 1 6.67 6 6 (40.00) AMP-NAL-TET-CHL-(SXT-FIS)-GEN 3 20.00 AMP-NAL-TET-CHL-(SXT-FIS)-STR 2 13.33 AMP-NAL-TET-CHL-FIS-(GEN-STR) 1 6.67 猪源 21 (100.00) 3 TET-FIS-STR 1 4.76 1 (4.76) 4 8 (38.10) AMP-TET-FIS-STR 3 14.29 (CRO-XNL-AMP)-TET-FIS-STR 2 9.52 (CRO-XNL-AMP)-TET-CHL-(SXT-FIS) 1 4.76 NAL-AZI-TET-CHL 1 4.76 AMP-NAL-TET-FIS 1 4.76 (CRO-XNL-AMP)-TET-CHL-(SXT-FIS) 1 4.76 5 NAL-TET-CHL-(SXT-FIS)-(GEN-STR) 1 4.76 1 (4.76) 6 10 (47.62) AMP-NAL-TET-CHL-(SXT-FIS)-GEN 5 23.81 AMP-NAL-TET-CHL-(SXT-FIS)-(GEN-STR) 3 14.29 AMP-NAL-TET-CHL-(SXT-FIS)-STR 2 9.52 7 AMP-NAL-AZI-TET-CHL-FIS-STR 1 4.76 1 (4.76) 注:CRO. 头孢曲松;XNL. 头孢噻呋;AMP. 氨苄西林;AUG-2. 阿莫西林/克拉维酸;TET. 四环素;GEN. 庆大霉素;STR. 链霉素;CHL. 氯霉素;NAL. 萘啶酸;SXT. 甲氧苄氨嘧啶/磺胺甲恶唑;FIS. 磺胺异恶唑;AZI. 阿奇霉素 表 3 鸡源和猪源鼠伤寒沙门菌序列类型
Table 3. Sequence types of S. Typhimurium strains of chicken and pork
序列类型 鸡源(n=15) 猪源(n=21) 株数 率(%) 株数 率(%) ST19 3 20.00 1 4.76 ST34 9 60.00 20 95.24 ST36 1 6.67 0 0.00 ST99 2 13.33 0 0.00 注:ST. 序列类型 表 4 鸡源和猪源鼠伤寒沙门菌耐药基因及点突变
Table 4. Antibiotic resistance genes and point mutations of S. Typhimurium strains of chicken and pork
耐药基因/点突变 鸡源(n=15) 猪源(n=21) P值 株数 率(%) 株数 率(%) 超广谱β-内酰胺类 blaCTX-M-27 1 6.67 0 0.00 0.864 blaCTX-M-55 0 0.00 2 9.52 0.623 blaOXA-1 4 26.67 6 28.57 1.000 blaTEM-1 2 13.33 10 47.62 0.073 喹诺酮类 aac(6')-Ib-cr 4 26.67 6 28.57 1.000 oqxA 4 26.67 9 42.86 0.519 oqxB 4 26.67 9 42.86 0.519 qnrS1 0 0.00 2 9.52 0.623 qnrS2 0 0.00 1 4.76 1.000 四环素类 tet(B) 4 26.67 17 80.95 0.004 tet(M) 0 0.00 3 14.29 0.359 氯霉素类 catB3 4 26.67 6 28.57 1.000 cmlA1 5 33.33 11 52.38 0.427 floR 5 33.33 10 47.62 0.607 磺胺类 dfrA12 5 33.33 10 47.62 0.607 sul1 5 33.33 8 38.10 1.000 sul2 6 40.00 16 76.19 0.064 sul3 5 33.33 9 42.86 0.817 氨基糖苷类耐药基因 aac(2')-IIa 2 13.33 0 0.00 0.325 aac(3)-IId 1 6.67 0 0.00 0.864 aac(3)-IV 5 33.33 9 42.86 0.817 aac(6')-Iaa 15 100.00 21 100.00 – aac(6')-Ib7 1 6.67 0 0.00 0.864 aadA2 0 0.00 3 14.29 0.359 ant(3'')-IIa 5 33.33 11 52.38 0.427 aph(3')-Ia 5 33.33 8 38.10 1.000 aph(3'')-Ib 2 13.33 11 52.38 0.040 aph(4)-Ia 5 33.33 9 42.86 0.817 aph(6)-Id 2 13.33 11 52.38 0.040 QRDR点突变 gyrA S83F 1 6.67 1 4.76 1.000 gyrA D87N 6 40.00 5 23.81 0.501 gyrA D87Y 1 6.67 7 33.33 0.136 注:–. 不符合检验条件,未统计检验,QRDR. 喹诺酮耐药决定区 表 5 鸡源和猪源鼠伤寒沙门菌抗生素耐药与耐药基因携带关系
Table 5. Relationship of antimicrobial susceptibility with antimicrobial resistance genes of S. Typhimurium strains of chicken and pork
抗生素 表型耐药数
(株)表型不耐药数
(株)基因
阳性基因
阴性基因
阳性基因
阴性β-内酰胺类 头孢曲松 3 1 19 13 头孢西丁 0 0 22 14 头孢噻呋 3 1 19 13 氨苄青霉素 18 10 4 4 阿莫西林/克拉维酸 0 1 22 13 喹诺酮类 环丙沙星 0 0 17 19 萘啶酸 13 12 4 7 大环内酯类 阿奇霉素 0 2 0 34 四环素类 四环素 18 12 3 3 氯霉素类 氯霉素 13 10 5 8 磺胺类 甲氧苄氨嘧啶/磺胺甲恶唑 19 0 17 0 磺胺异恶唑 30 0 6 0 氨基糖苷类 庆大霉素 9 7 15 5 链霉素 14 3 10 9 -
[1] Tobolowsky FA, Cui ZH, Hoekstra RM, et al. Salmonella serotypes associated with illnesses after Thanksgiving Holiday, United States, 1998−2018[J]. Emerg Infect Dis, 2022, 28(1): 210–213. DOI: 10.3201/eid2801.211986. [2] Hendriksen RS, Vieira AR, Karlsmose S, et al. Global monitoring of Salmonella serovar distribution from the World Health Organization Global Foodborne Infections Network Country Data Bank: results of quality assured laboratories from 2001 to 2007[J]. Foodborne Pathog Dis, 2011, 8(8): 887–900. DOI: 10.1089/fpd.2010.0787. [3] Ran L, Wu SY, Gao YJ, et al. Laboratory-based surveillance of nontyphoidal Salmonella infections in China[J]. Foodborne Pathog Dis, 2011, 8(8): 921–927. DOI: 10.1089/fpd.2010.0827. [4] Li YL, Yang QP, Cao CY, et al. Prevalence and characteristics of Salmonella isolates recovered from retail raw chickens in Shaanxi province, China[J]. Poult Sci, 2020, 99(11): 6031–6044. DOI: 10.1016/j.psj.2020.07.038. [5] Wall PG, Threllfall EJ, Ward LR, et al. Multiresistant Salmonella typhimurium DT104 in cats: a public health risk[J]. Lancet, 1996, 348(9025): 471. DOI: 10.1016/S0140−6736(96)24033−4. [6] Wang XC, Biswas S, Paudyal N, et al. Antibiotic resistance in Salmonella Typhimurium isolates recovered from the food chain through national antimicrobial resistance monitoring system between 1996 and 2016[J]. Front Microbiol, 2019, 10: 985. DOI: 10.3389/fmicb.2019.00985. [7] Chen KC, Yang C, Chan EW, et al. Emergence of conjugative IncC type plasmid simultaneously encoding resistance to ciprofloxacin, ceftriaxone, and azithromycin in Salmonella[J]. Antimicrob Agents Chemother, 2021, 65(9): e0104621. DOI: 10.1128/AAC.01046−21. [8] Ellington MJ, Ekelund O, Aarestrup FM, et al. The role of whole genome sequencing in antimicrobial susceptibility testing of bacteria: report from the EUCAST Subcommittee[J]. Clin Microbiol Infect, 2017, 23(1): 2–22. DOI: 10.1016/j.cmi.2016.11.012. [9] Diep B, Barretto C, Portmann AC, et al. Salmonella Serotyping; comparison of the traditional method to a microarray-based method and an in silico platform using whole genome sequencing data[J]. Front Microbiol, 2019, 10: 2554. DOI: 10.3389/fmicb.2019.02554. [10] Zhang LN, Fu Y, Xiong ZY, et al. Highly prevalent multidrug-resistant Salmonella from chicken and pork meat at retail markets in Guangdong, China[J]. Front Microbiol, 2018, 9: 2104. DOI: 10.3389/fmicb.2018.02104. [11] Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data[J]. Bioinformatics, 2014, 30(15): 2114–2120. DOI: 10.1093/bioinformatics/btu170. [12] Bankevich A, Nurk S, Antipov D, et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing[J]. J Comput Biol, 2012, 19(5): 455–477. DOI: 10.1089/cmb.2012.0021. [13] McClelland M, Sanderson KE, Spieth J, et al. Complete genome sequence of Salmonella enterica serovar Typhimurium LT2[J]. Nature, 2001, 413(6858): 852–856. DOI: 10.1038/35101614. [14] Li H, Handsaker B, Wysoker A, et al. The sequence alignment/map format and SAMtools[J]. Bioinformatics, 2009, 25(16): 2078–2079. DOI: 10.1093/bioinformatics/btp352. [15] Garrison E, Marth G. Haplotype-based variant detection from short-read sequencing[EB/OL]. (2012-07-20)[2023-02-15]. https://arxiv.org/abs/1207.3907. [16] Croucher NJ, Page AJ, Connor TR, et al. Rapid phylogenetic analysis of large samples of recombinant bacterial whole genome sequences using Gubbins[J]. Nucl Acids Res, 2015, 43(3): e15. DOI: 10.1093/nar/gku1196. [17] Page AJ, Taylor B, Delaney AJ, et al. SNP-sites: rapid efficient extraction of SNPs from multi-FASTA alignments[J]. Microb Genom, 2016, 2(4): e000056. DOI: 10.1099/mgen.0.000056. [18] Nguyen LT, Schmidt HA, von Haeseler A, et al. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies[J]. Mol Biol Evol, 2015, 32(1): 268–274. DOI: 10.1093/molbev/msu300. [19] McArthur AG, Waglechner N, Nizam F, et al. The comprehensive antibiotic resistance database[J]. Antimicrob Agents Chemother, 2013, 57(7): 3348–3357. DOI: 10.1128/AAC.00419−13. [20] Proroga YTR, Mancusi A, Peruzy MF, et al. Characterization of Salmonella Typhimurium and its monophasic variant 1, 4, [5], 12: i: -isolated from different sources[J]. Folia Microbiol, 2019, 64(6): 711–718. DOI: 10.1007/s12223−019−00683−6. [21] Dong N, Li YR, Zhao JY, et al. The phenotypic and molecular characteristics of antimicrobial resistance of Salmonella enterica subsp. enterica serovar Typhimurium in Henan province, China[J]. BMC Infect Dis, 2020, 20(1): 511. DOI: 10.1186/s12879−020−05203−3. [22] Guo LL, Zhao YD. Global spread and molecular characterization of CTX-M-producing Salmonella Typhimurium Isolates[J]. Antibiotics, 2021, 10(11): 1417. DOI: 10.3390/antibiotics10111417. [23] Shang DQ, Zhao H, Xu XB, et al. Conjugative IncHI2 plasmid harboring novel class 1 integron mediated dissemination of multidrug resistance genes in Salmonella Typhimurium[J]. Food Control, 2021, 122: 107810. DOI: 10.1016/j.foodcont.2020.107810. [24] Lai J, Wu CM, Wu CB, et al. Serotype distribution and antibiotic resistance of Salmonella in food-producing animals in Shandong province of China, 2009 and 2012[J]. Int J Food Microbiol, 2014, 180: 30–38. DOI: 10.1016/j.ijfoodmicro.2014.03.030. [25] Lyu N, Feng YQ, Pan YL, et al. Genomic characterization of Salmonella Enterica isolates from retail meat in Beijing, China[J]. Front Microbiol, 2021, 12: 636332. DOI: 10.3389/fmicb.2021.636332. [26] Glynn MK, Bopp C, Dewitt W, et al. Emergence of multidrug-resistant Salmonella enterica serotype Typhimurium DT104 infections in the United States[J]. N Engl J Med, 1998, 338(19): 1333–1339. DOI: 10.1056/NEJM199805073381901. [27] Sjölund-Karlsson M, Joyce K, Blickenstaff K, et al. Antimicrobial susceptibility to azithromycin among Salmonella Enterica isolates from the United States[J]. Antimicrob Agents Chemother, 2011, 55(9): 3985–3989. DOI: 10.1128/AAC.00590−11. [28] McDermott PF, Tyson GH, Kabera C, et al. Whole-genome sequencing for detecting antimicrobial resistance in nontyphoidal Salmonella[J]. Antimicrob Agents Chemother, 2016, 60(9): 5515–5520. DOI: 10.1128/AAC.01030−16. [29] Deng XL, Ran L, Wu SY, et al. Laboratory-based surveillance of non-typhoidal Salmonella infections in Guangdong province, China[J]. Foodborne Pathog Dis, 2012, 9(4): 305–312. DOI: 10.1089/fpd.2011.1008. [30] Dahms C, Hübner NO, Kossow A, et al. Occurrence of ESBL-producing Escherichia coli in livestock and farm workers in Mecklenburg-western Pomerania, Germany[J]. PLoS One, 2015, 10(11): e0143326. DOI: 10.1371/journal.pone.0143326. [31] Qiao J, Zhang Q, Alali WQ, et al. Characterization of extended-spectrum β-lactamases (ESBLs)-producing Salmonella in retail raw chicken carcasses[J]. Int J Food Microbiol, 2017, 248: 72–81. DOI: 10.1016/j.ijfoodmicro.2017.02.016. [32] Jain P, Sudhanthirakodi S, Chowdhury G, et al. Antimicrobial resistance, plasmid, virulence, multilocus sequence typing and pulsed-field gel electrophoresis profiles of Salmonella Enterica serovar Typhimurium clinical and environmental isolates from India[J]. PLoS One, 2018, 13(12): e0207954. DOI: 10.1371/journal.pone.0207954. [33] Chen ZQ, Bai J, Zhang XB, et al. Highly prevalent multidrug resistance and QRDR mutations in Salmonella isolated from chicken, pork and duck meat in southern China, 2018-2019[J]. Int J Food Microbiol, 2021, 340: 109055. DOI: 10.1016/j.ijfoodmicro.2021.109055. [34] Turner AK, Nair S, Wain J. The acquisition of full fluoroquinolone resistance in Salmonella Typhi by accumulation of point mutations in the topoisomerase targets[J]. J Antimicrob Chemother, 2006, 58(4): 733–740. DOI: 10.1093/jac/dkl333. [35] Bawn M, Alikhan NF, Thilliez G, et al. Evolution of Salmonella enterica serotype Typhimurium driven by anthropogenic selection and niche adaptation[J]. PLoS Genet, 2020, 16(6): e1008850. DOI: 10.1371/journal.pgen.1008850. [36] Biswas S, Li Y, Elbediwi M, et al. Emergence and dissemination of mcr-carrying clinically relevant Salmonella Typhimurium monophasic clone ST34[J]. Microorganisms, 2019, 7(9): 298. DOI: 10.3390/microorganisms7090298. [37] 蒋增海, 滕霖, 贺安文, 等. 猪产业链中鼠伤寒沙门菌及沙门菌血清型4, [5], 12: i: -基因组学分析[J]. 畜牧兽医学报,2023,54(3):1199–1209. DOI:10.11843/j.issn.0366−6964.2023.03.031.Jiang ZH, Teng L, He AW, et al. Genomic analysis of Salmonella Typhimurium Isolates and Salmonella Serotype 4, [5], 12: i: -Isolates from Pig-borne Food Chain[J]. Acta Vet Zootech Sin, 2023, 54(3): 1199–1209. DOI: 10.11843/j.issn.0366−6964.2023.03.031. [38] Zhao XN, Yang J, Zhang BZ, et al. Characterization of integrons and resistance genes in Salmonella Isolates from farm animals in Shandong province, China[J]. Front Microbiol, 2017, 8: 1300. DOI: 10.3389/fmicb.2017.01300. [39] Elnekave E, Hong S, Mather AE, et al. Salmonella Enterica Serotype 4, [5], 12: i: - in Swine in the United States Midwest: an emerging multidrug-resistant clade[J]. Clin Infect Dis, 2018, 66(6): 877–885. DOI: 10.1093/cid/cix909. -