我国中老年糖尿病患者抑郁轨迹发展研究

周蓉 曾静

周蓉, 曾静. 我国中老年糖尿病患者抑郁轨迹发展研究[J]. 疾病监测, 2023, 38(10): 1258-1263. doi: 10.3784/jbjc.202302160044
引用本文: 周蓉, 曾静. 我国中老年糖尿病患者抑郁轨迹发展研究[J]. 疾病监测, 2023, 38(10): 1258-1263. doi: 10.3784/jbjc.202302160044
Zhou Rong, Zeng Jing. Development trajectory of depression in diabetes patients in middle-aged and elderly Chinese[J]. Disease Surveillance, 2023, 38(10): 1258-1263. doi: 10.3784/jbjc.202302160044
Citation: Zhou Rong, Zeng Jing. Development trajectory of depression in diabetes patients in middle-aged and elderly Chinese[J]. Disease Surveillance, 2023, 38(10): 1258-1263. doi: 10.3784/jbjc.202302160044

我国中老年糖尿病患者抑郁轨迹发展研究

doi: 10.3784/jbjc.202302160044
基金项目: 宜宾市卫生健康委员会科研项目(No. 2020YW087)
详细信息
    作者简介:

    周蓉,女,四川省宜宾市人,本科,主治医师,主要从事糖尿病及其他内分泌疾病诊治,Email:446870937@qq.com

    通讯作者:

    曾静,Tel:17844621103,Email:635485780@qq.com

  • 中图分类号: R211;R587.1

Development trajectory of depression in diabetes patients in middle-aged and elderly Chinese

Funds: This study is supported by Yibin Health and Wellness Committee Scientific Research Program (No. 2020YW087)
More Information
  • 摘要:   目的  研究旨在识别我国中老年糖尿病患者的抑郁发展轨迹,检验其抑郁轨迹是否存在性别和城乡差异,为糖尿患者抑郁症状的预防与管理提供依据。  方法  采用中国健康与养老追踪调研中2011—2018年4期纵向数据,选择≥45岁确诊糖尿病患者数据进行分析。 应用增长混合模型开展潜类别模型拟合性评估,分析男性与女性、城市与农村中老年糖尿病患者抑郁症状的发展轨迹。  结果  共481名中老年人纳入数据分析,男性(7.17~7.81)和城市(7.50~8.38)糖尿病患者在各阶段抑郁症状得分均值普遍低于女性(9.07~10.27)和农村(9.06~10.11)患者。 男性糖尿病患者抑郁症状轨迹可划分为高–降组与低–升组,女性患者可划分为恒高组和低–升组;城市患者抑郁症状轨迹可划分为高–降组和低–升组,农村患者可划分为恒低组和低–升组。  结论  我国中老年糖尿病患者抑郁症状整体有增长趋势,不同群体抑郁症状轨迹具有异质性。 女性和农村糖尿病患者抑郁症状更为严重,是心理干预措施的重点关注对象。
  • 表  1  481例中老年糖尿病患者基本特征

    Table  1.   Basic characteristics of 481 cases of middle-aged and elderly diabetes patients

    人口学变量类别糖尿病患者(例)构成比(%)
    性别 男性 210 43.66
    女性 271 56.34
    居住地 城镇 254 52.81
    农村 227 47.19
    婚姻 在婚 435 90.44
    不在婚姻 46 9.56
    学历 初中及以下 407 84.61
    高中 58 12.06
    大学及以上 16 3.33
    下载: 导出CSV

    表  2  481例中老年糖尿病患者各时间点抑郁症状得分以及相关性分析

    Table  2.   Depression scores and its correlation analysis at each stage in 481 middle-aged and elderly diabetes patients

     变量2011年2013年2015年2018年
    性别划分
     T10.51a0.49a0.43a
     T20.56a0.49a0.43a
     T3
     T4
    0.48a
    0.45a
    0.53a
    0.39a

    0.50a
    0.52a
     男性
    (均数±标准差)
    7.50±5.997.17±5.327.44±6.397.81±5.88
     女性
    (均数±标准差)
    9.28±6.489.07±6.079.97±6.5010.27±6.95
    城乡划分
     T10.47a0.46a0.46a
     T20.59a0.49a0.42a
     T3
     T4
    0.53a
    0.42a
    0.54a
    0.43a

    0.50a
    0.52a
     城市b
    (均数±标准差)
    7.87±6.377.50±5.507.96±6.328.38±6.36
     农村b
    (均数±标准差)
    9.22±6.229.06±6.099.89±6.7010.11±6.76
    注:a. P<0.01;b, T1~T4. 2011、2013、2015、2018年4个时间点中老年糖尿患者的抑郁症状得分。“—”的连线形成相关系数的对角线。性别部分对角线以下为男性抑郁的相关系数,对角线以上为女性抑郁的相关系数;城乡部分对角线以下为城市抑郁的相关系数,对角线以上为农村抑郁的相关系数;−表示无数据
    下载: 导出CSV

    表  3  以性别划分的增长混合模型拟合信息

    Table  3.   Gender specific fitting information of Growth Mixture Model

    类别KLog(L)AICBICaBICEntropyLMRBLRT分类概率
    男性
     类别1 9 −2 565.68 5 149.36 5 179.48 5 150.97
     类别2 12 −2 549.97 5 123.94 5 164.11 5 126.09 0.83 0.001 0.000 0.148/0.852
     类别3 15 −2 542.44 5 114.88 5 165.09 5 117.56 0.87 0.318 0.010 0.128/0.848/0.024
     类别4 18 −2 532.09 5 100.17 5 160.42 5 103.38 0.89 0.102 0.000 0.029/0.033/0.100/0.838
     类别5 21 −2 527.88 5 097.75 5 168.04 5 101.50 0.82 0.333 0.190 0.015/0.090/0.028/0.153/0.714
    女性
     类别1 9 −3 418.79 6 855.59 6 888.01 6 859.47
     类别2 12 −3 404.72 6 833.44 6 876.66 6 838.61 0.74 0.097 0.000 0.236/0.764
     类别3 15 −3 396.22 6 822.44 6 876.47 6 828.91 0.75 0.294 0.010 0.103/0.768/0.129
     类别4 18 −3 390.33 6 816.67 6 881.51 6 824.43 0.79 0.235 0.040 0.188/0.018/0.731/0.063
     类别5 21 −3 381.72 6 805.45 6 881.09 6 814.51 0.80 0.356 0.005 0.070/0.059/0.317/0.465/0.089
    注:类别1~5分别表示将男性或女性群体划分为1~5个组,既类别1表示将群体划分为1个组,类别2表示将群体划分为2个组,依此类推。K为模型中自由估计的参数个数,Log(L). 对数似然比,AIC. 艾凯克信息准则,BIC. 贝叶斯信息准则,aBIC. 调整后的贝叶斯信息准则,Entropy. 信息熵,LMR. 似然比检验指标Lo-Mendell-Rubin的缩写,BLRT. 基于Bootstrap的似然比检验;−表示无数据
    下载: 导出CSV

    表  4  以城乡划分的增长混合模型拟合信息

    Table  4.   Urban-rural area specific fitting information of Growth Mixture Model

    类别KLog(L)AICBICaBICEntropyLMRBLRT分类概率
    城市
     类别1 9 −3128.85 6275.71 6307.54 6279.01
     类别2 12 −3100.49 6224.97 6267.42 6229.38 0.90 0.000 0.000 0.114/0.886
     类别3 15 −3095.18 6220.36 6273.42 6225.86 0.88 0.280 0.045 0.036/0.114/0.850
     类别4 18 −3085.64 6207.28 6270.95 6213.89 0.82 0.505 0.005 0.095/0.035/0.665/0.205
     类别5 21 −3073.04 6188.08 6262.37 6195.79 0.88 0.297 0.000 0.035/0.028/0.606/0.075/0.256
    农村
     类别1 9 −2861.70 5741.39 5772.22 5743.69
     类别2 12 −2846.35 5716.70 5757.80 5719.77 0.80 0.000 0.000 0.841/0.159
     类别3 15 −2840.21 5710.41 5761.79 5714.25 0.78 0.126 0.020 0.093/0.568/0.339
     类别4 18 −2835.88 5707.77 5769.42 5712.37 0.77 0.400 0.145 0.167/0.119/0.075/0.639
     类别5 21 −2831.12 5704.23 5776.16 5709.60 0.81 0.356 0.005 0.013/0.106/0.084/0.194/0.603
    注:类别1~5分别表示将城市或农村群体划分为1~5个组,类别1表示将群体划分为1个组,类别2表示将群体划分为2个组,依此类推。K. 模型中自由估计的参数个数,Log(L). 对数似然比,AIC. 艾凯克信息准则,BIC. 贝叶斯信息准则,aBIC. 调整后的贝叶斯信息准则,Entropy. 信息熵,LMR. 似然比检验指标Lo-Mendell-Rubin的缩写,BLRT. 基于Bootstrap的似然比检验;−表示无数据
    下载: 导出CSV

    表  5  糖尿病患者抑郁症状的增长混合模型截距和斜率

    Table  5.   Intercepts and slopes from Growth Mixture Model for depression in diabetes patients

    潜在类别截距(α斜率(β
    参数估计值$s\bar x$tP参数估计值$ s\bar x $tP
    男性
     高–降组16.751.1414.670.000−0.790.23−3.430.001
     低–升组5.630.3914.640.0000.200.073.110.002
    女性
     恒高组16.441.3612.100.000−0.100.37−0.270.791
     低–升组6.710.4016.960.0000.250.112.290.022
    城市
     高–降组19.011.0717.780.000−0.820.26−3.110.002
     低–升组5.970.3119.590.0000.220.063.570.000
    农村
     恒低组8.600.4220.550.000−0.080.07−1.140.256
     低–升组11.441.0910.480.0001.290.225.850.000
    下载: 导出CSV
  • [1] Maydick DR, Acee AM. Comorbid depression and diabetic foot ulcers[J]. Home Healthc Now, 2016, 34(2): 62–67. DOI:  10.1097/NHH.0000000000000340.
    [2] 彭焱, 李薇, 黄燕, 等. 伴发焦虑抑郁症状的老年糖尿病患者意义感[J]. 中国健康心理学杂志,2022,30(2):196–200. DOI: 10.13342/j.cnki.cjhp.2022.02.007.

    Peng Y, Li W, Huang Y, et al. Effect of sense of meaning in elderly diabetic patients with anxiety and depression[J]. China J Health Psychol, 2022, 30(2): 196–200. DOI:  10.13342/j.cnki.cjhp.2022.02.007.
    [3] Buchberger B, Huppertz H, Krabbe L, et al. Symptoms of depression and anxiety in youth with type 1 diabetes: a systematic review and Meta-analysis[J]. Psychoneuroendocrinology, 2016, 70: 70–84. DOI:  10.1016/j.psyneuen.2016.04.019.
    [4] Anderson RJ, Freedland KE, Clouse RE, et al. The prevalence of comorbid depression in adults with diabetes: a Meta-analysis[J]. Diabetes Care, 2001, 24(6): 1069–1078. DOI:  10.2337/diacare.24.6.1069.
    [5] 李萍. 中老年糖尿病周围神经病变患者焦虑抑郁现状及其影响因素[J]. 中国老年学杂志,2017,37(8):2032–2034. DOI:10.3969/j.issn.1005−9202.2017.08.093.

    Li P. Status and influencing factors of anxiety and depression in elderly patients with diabetic peripheral neuropathy[J]. Chin J Gerontol, 2017, 37(8): 2032–2034. DOI: 10.3969/j.issn.1005−9202.2017.08.093.
    [6] Coleman SM, Katon W, Lin E, et al. Depression and death in diabetes; 10-year follow-up of all-cause and cause-specific mortality in a diabetic cohort[J]. Psychosomatics, 2013, 54(5): 428–436. DOI:  10.1016/j.psym.2013.02.015.
    [7] 武钰翔, 程玉霞, 李丽君, 等. 北京市2型糖尿病患者抑郁情况及其影响因素分析[J]. 中国全科医学,2019,22(21):2557–2563. DOI:10.12114/j.issn.1007−9572.2019.00.070.

    Wu YX, Cheng YX, Li LJ, et al. Prevalence of depression and influencing factors in patients with type 2 diabetes: a multi-center study in Beijing, China[J]. Chin Gen Pract, 2019, 22(21): 2557–2563. DOI: 10.12114/j.issn.1007−9572.2019.00.070.
    [8] 王雅琦, 吴方, 黄立群, 等. 养老机构老年人抑郁情绪发展轨迹及预测因素分析[J]. 护理学杂志,2019,34(18):1–4. DOI:10.3870/j.issn.1001−4152.2019.18.001.

    Wang YQ, Wu F, Huang LQ, et al. Trajectory of depression among institutionalized elderly persons and its determinants[J]. J Nurs Sci, 2019, 34(18): 1–4. DOI: 10.3870/j.issn.1001−4152.2019.18.001.
    [9] 熊屹立, 刘声悦, 杨金燕, 等. 基于潜变量混合增长模型的中国中老年抑郁症状发展轨迹与痴呆症关系研究[J]. 现代预防医学,2023,50(7):1171–1175. DOI: 10.20043/j.cnki.MPM.202208420.

    Xiong YL, Liu SY, Yang JY, et al. A study on the relationship between the developmental trajectory of depressive symptoms and dementia in middle-aged and elderly Chinese based on a latent variable mixed growth model[J]. Mod Prev Med, 2023, 50(7): 1171–1175. DOI:  10.20043/j.cnki.MPM.202208420.
    [10] Musliner KL, Munk-Olsen T, Eaton WW, et al. Heterogeneity in long-term trajectories of depressive symptoms: patterns, predictors and outcomes[J]. J Affect Disord, 2016, 192: 199–211. DOI:  10.1016/j.jad.2015.12.030.
    [11] 张秀娟, 李海辉, 高欣, 等. 社区老年糖尿病患者抑郁影响因素研究[J]. 疾病监测,2021,36(12):1337–1340. DOI: 10.3784/jbjc.202111230610.

    Zhang XJ, Li HH, Gao X, et al. Risk factors of depression in elderly diabetic patients in the community[J]. Dis Surveill, 2021, 36(12): 1337–1340. DOI:  10.3784/jbjc.202111230610.
    [12] 林田, 刘雪莲, 蓝宇涛, 等. 老年2型糖尿病患者抑郁水平及相关因素[J]. 中国老年学杂志,2013,33(9):2115–2117. DOI:10.3969/j.issn.1005−9202.2013.09.059.

    Lin T, Liu XL, Lan YT, et al. Depression level and related factors in elderly patients with type 2 diabetes mellitus[J]. Chin J Gerontol, 2013, 33(9): 2115–2117. DOI: 10.3969/j.issn.1005−9202.2013.09.059.
    [13] Lipscombe C, Burns RJ, Schmitz N. Exploring trajectories of diabetes distress in adults with type 2 diabetes: a latent class growth modeling approach[J]. J Affect Disord, 2015, 188: 160–166. DOI:  10.1016/j.jad.2015.08.003.
    [14] Schmitz N, Gariépy G, Smith KJ, et al. The pattern of depressive symptoms in people with type 2 diabetes: a prospective community study[J]. J Psychosom Res, 2013, 74(2): 128–134. DOI:  10.1016/j.jpsychores.2012.09.021.
    [15] Chiu CJ, Tseng YH, Hsu YC, et al. Depressive symptom trajectories in the first 10 years of diabetes diagnosis: antecedent factors and link with future disability in Taiwan[J]. Soc Psychiatry Psychiatr Epidemiol, 2017, 52(7): 829–836. DOI: 10.1007/s00127−016−1314−4.
    [16] Andresen EM, Malmgren JA, Carter WB, et al. Screening for depression in well older adults: evaluation of a short form of the CES-D[J]. Am J Prev Med, 1994, 10(2): 77–84. DOI: 10.1016/S0749−3797(18)30622−6.
    [17] Ram N, Grimm KJ. Growth mixture modeling: a method for identifying differences in longitudinal change among unobserved groups[J]. Int J Behav Dev, 2009, 33(6): 565–576. DOI:  10.1177/0165025409343765.
    [18] 王孟成, 邓俏文, 毕向阳, 等. 分类精确性指数Entropy在潜剖面分析中的表现: 一项蒙特卡罗模拟研究[J]. 心理学报,2017,49(11):1473–1482. DOI: 10.3724/SP.J.1041.2017.01473.

    Wang MC, Deng QW, Bi XY, et al. Performance of the entropy as an index of classification accuracy in latent profile analysis: a Monte Carlo simulation study[J]. Acta Psychol Sin, 2017, 49(11): 1473–1482. DOI:  10.3724/SP.J.1041.2017.01473.
    [19] 刘爱楼, 刘贤敏. 基于潜变量混合增长模型的大学生抑郁情绪的发展轨迹: 3年追踪研究[J]. 中国临床心理学杂志,2020,28(1):71–75,118. DOI:10.16128/j.cnki.1005−3611.2020.01.017.

    Liu AL, Liu XM. Development trajectory of depression in college students: a three-year follow-up study with the latent growth mixture model[J]. Chin J Clin Psychol, 2020, 28(1): 71–75,118. DOI: 10.16128/j.cnki.1005−3611.2020.01.017.
    [20] 王孟成, 毕向阳, 叶浩生. 增长混合模型: 分析不同类别个体发展趋势[J]. 社会学研究,2014,29(4):220–241,246. DOI: 10.19934/j.cnki.shxyj.2014.04.011.

    Wang MC, Bi XY, Ye HS. Mixed growth model: analyzing the development trend of different categories of individuals[J]. Sociol Stud, 2014, 29(4): 220–241,246. DOI:  10.19934/j.cnki.shxyj.2014.04.011.
    [21] Khan MA, Sultan SM, Nazli R, et al. Depression among patients with type-Ⅱ diabetes mellitus[J]. J Coll Physicians Surg Pak, 2014, 24(10): 770–771. DOI:  10.2014/JCPSP.770771.
    [22] Ali S, Stone MA, Peters JL, et al. The prevalence of co-morbid depression in adults with type 2 diabetes: a systematic review and Meta-analysis[J]. Diabet Med, 2006, 23(11): 1165–1173. DOI: 10.1111/j.1464−5491.2006.01943.x.
    [23] Katon WJ, Rutter C, Simon G, et al. The association of comorbid depression with mortality in patients with type 2 diabetes[J]. Diabetes Care, 2005, 28(11): 2668–2672. DOI:  10.2337/diacare.28.11.2668.
  • 加载中
计量
  • 文章访问数:  83
  • HTML全文浏览量:  49
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-16
  • 网络出版日期:  2023-07-10
  • 刊出日期:  2023-11-07

目录

    /

    返回文章
    返回

    在线交流

    防诈骗公告

    大家好:近期有不法分子以本刊编辑身份添加作者微信,请务必提高警惕!本刊关于稿件的一切事项通知均采用编辑部唯一邮箱(jbjc@icdc.cn)和座机(010-58900732)联系作者,且在录用稿件后仅收取版面费,无其他任何名目费用(如审稿费和加急费等),非编辑部邮箱发送的本刊收费用通知等均为诈骗,不要随意汇入款项!如有可疑及时致电编辑部核实确认!