基于多重PCR-质谱微测序技术的结核分枝杆菌对一线治疗药物耐药性检测系统构建

徐晓娜 赵欣 欧喜超 宋衍燕 赵雁林 肖迪

徐晓娜, 赵欣, 欧喜超, 宋衍燕, 赵雁林, 肖迪. 基于多重PCR-质谱微测序技术的结核分枝杆菌对一线治疗药物耐药性检测系统构建[J]. 疾病监测. doi: 10.3784/jbjc.202303160107
引用本文: 徐晓娜, 赵欣, 欧喜超, 宋衍燕, 赵雁林, 肖迪. 基于多重PCR-质谱微测序技术的结核分枝杆菌对一线治疗药物耐药性检测系统构建[J]. 疾病监测. doi: 10.3784/jbjc.202303160107
Xu Xiaona, Zhao Xin, Ou Xichao, Song Yanyan, Zhao Yanlin, Xiao Di. Construction of Mycobacterium tuberculosis resistance detection system for first-line treatment drugs based on multiple pcr-ms mini-sequence technology[J]. Disease Surveillance. doi: 10.3784/jbjc.202303160107
Citation: Xu Xiaona, Zhao Xin, Ou Xichao, Song Yanyan, Zhao Yanlin, Xiao Di. Construction of Mycobacterium tuberculosis resistance detection system for first-line treatment drugs based on multiple pcr-ms mini-sequence technology[J]. Disease Surveillance. doi: 10.3784/jbjc.202303160107

基于多重PCR-质谱微测序技术的结核分枝杆菌对一线治疗药物耐药性检测系统构建

doi: 10.3784/jbjc.202303160107
详细信息
    作者简介:

    徐晓娜,女,内蒙古自治区乌兰察布市人,硕士研究生在读,主要从事病原菌耐药性新型检测方法构建,Email:xuxiaona97@163.com

    赵欣,女,山西省晋中市人,硕士,研究实习员,主要从事核酸质谱分析工作,Email:zhaoxin@icdc.cn

    通讯作者:

    赵雁林,Email:zhaoyanlin@icdc.cn

    肖迪,Tel:010–58900704,Email: xiaodi@icdc.cn

  • 中图分类号: R211

Construction of Mycobacterium tuberculosis resistance detection system for first-line treatment drugs based on multiple pcr-ms mini-sequence technology

More Information
  • 摘要:   目的  构建一种基于多重PCR-质谱微测序技术的结核分枝杆菌耐药基因多位点检测方法和检测模块,实现结核分枝杆菌对一线抗结核药物的高通量快速检测,为结核病诊疗提供一种新型技术支撑。  方法  通过对5个SNP位点靶基因进行多重PCR扩增、单碱质量探针延伸及分子量测定,同时完成16个突变位点、26种突变型的检测,实现结核分枝杆菌对利福平、异烟肼、吡嗪酰胺和乙胺丁醇等一线治疗药物抗性的通量检测。 采用40例结核分枝杆菌样本、50例呼吸道感染患者咽拭子样本进行检测体系准确性及特异性验证。  结果  本研究构建了基于5重PCR-质谱联用的结核分枝杆菌对一线治疗药物的泛耐药检测方法,并开发了质谱配套检测系统。 采用该系统,结核分枝杆菌对利福平、异烟肼、吡嗪酰胺、乙胺丁醇抗性检测的准确率和特异性均为100%,且具有7 h内完成96个样本的检测通量。  结论  本研究构建的方法具有操作简便、低成本、高通量的特点,耐药位点检测全面且准确,同时具有扩展性,可根据需要增添新的突变位点,在结核分枝杆菌耐药性检测分析中具有良好的应用前景。
  • 图  1  结核分枝杆菌突变位点的原始质量探针延伸质谱图

    注:A、B. MPE探针原始峰值;C~L. MPE探针突变位点延伸结果;M、N. 空白对照

    Figure  1.  Original mass probe extension mass spectrometry of the mutant site of Mycobacterium tuberculosis

    表  1  结核分枝杆菌主要耐药基因突变位点

    Table  1.   Drug resistance gene mutation sites of Mycobacterium tuberculosis

    抗菌药物耐药基因位置突变类型
    利福平 rpoB Q513P CAA→CCA
    D516Y GAC→TAC
    D516G/V GAC→GG/TC
    H526D/Y/N CAC→G/T/AAC
    H526L/R CAC→CTC
    H531L/W TCG→TTG
    异烟肼 katG S315T/N AGC→AC/AC
    inhA −15 C→T
    乙胺丁醇 embB M306V ATG→GTG
    M306I ATG→ATC/A/T
    Y319S/C TAT→TC/GT
    G406D GGC→GAC
    G406S GGC→AGC
    吡嗪酰胺 pncA Q10P CAG→CCG
    H57D CAC→GAC
    T76P ACT→CCT
    下载: 导出CSV

    表  2  结核分枝杆菌耐药基因扩增引物序列

    Table  2.   Sequence of primers for drug resistance gene amplification of Mycobacterium tuberculosis

    抗菌药物基因引物编号引物序列(5'~3')
    利福平 rpoB F1-rpoB acgttggatgAACCAGATCCGGGTCGGCAT
    R1-rpoB acgttggatgTAACCACGCCGTCGACCACCTT
    异烟肼 katG F2-katG acgttggatgCTGGAGCAGATGGGCTTG
    R2-katG acgttggatgAGGTCAGTGGCCAGCATC
    fabG-inhA F3- fabG1 acgttggatgCCTCGCTGCCCAGAAAGGGA
    R3- fabG1 acgttggatgGTAACCAGGACTGAACGG
    乙胺丁醇 embB F4-embB acgttggatgCGACGCCGTGGTGATATT
    R4-embB acgttggatgACCGCTCGATCAGCACAT
    吡嗪酰胺 pncA F6-pncA acgttggatgGCGTCATGGACCCTATATC
    R6-pncA acgttggatgCTCGTCGACTCCTTCGAAG
    下载: 导出CSV

    表  3  结核分枝杆菌MPE探针序列及其碱基延伸

    Table  3.   MPE probe sequence and its base extension of Mycobacterium tuberculosis

    耐药
    基因
    突变位点 突变型探针延伸序列(5'~3')分子量(Da)延伸1分子量(Da)延伸2分子量(Da)延伸3分子量(Da)延伸4分子量(Da)
    rpoB Q513PL A/C/T TTCGGCACCAGCCAGCTGAGCC 6681.4 A 6978.4 C 6954.4 T 7023.4
    D516Y(F) G/T GCACCAGCCAGCTGAGCCAATTCATG 7925.2 G 8238.2 T 8267.2
    D516GV(R) A/G/T CGACAGCGGGTTGTTCTGG 5875.8 A 6217.8 G 6148.8 T 6172.8
    H526DYN(F) C/G/T/A ACCCGCTGTCGGGGTTGACC 6110.0 C 6383.0 G 6423.0 T 6452.0 A 6407.0
    H526LR(R) A/T/G GCCGACAGTCGGCGCTTG 5516.6 A 5858.6 T 5813.6 G 5789.6
    H531LW C/T/G GACCCACAAGCGCCGACTGT 6072.0 C 6345.0 T 6414.0 G 6385.0
    katG S315TN G/C/A TGTTCGTCCATACGACCTCGATGC 7279.8 G 7552.8 C 7592.8 A 7621.8
    inhA −15 C/T GCATGGGTATGGGCCACTGACA 6800.4 C 7073.4 T 7142.4
    embB M306V(F) A/G GTCGGACGACGGCTACATCCTGGGC 7684.0 A 7981.0 G 7997.0
    M306I(R) G/C/A/T GGACGACGGCTACATCCTGGGCAT 7378.8 G 7691.8 C 7651.8 A 7675.8 T 7720.8
    Y319SC A/C/G CCACGCCGGCTACATGTCCAACT 6929.6 A 7226.6 C 7202.6 G 7242.6
    G406D(R) G/A CCAGCGAGCCGAGCGCGATGATG 7099.6 G 7372.6 A 7441.6
    G406S(F) G/A CAACGGCCTGCGGCCGGAG 5839.8 G 6152.8 A 6136.8
    pncA Q10P A/C GCGAGCCACCCTCGCAGAAGTCGTTC 7917.2 A 8259.2 C 8230.2
    H57D C/G GGAATAGTCCGGTGTGCCGGAGAAGT 8116.2 C 8429.2 G 8389.2
    T76P A/C TGGGATGGAAGTCCGCGCCGGGAG 7499.8 A 7841.8 C 7812.8
    注:
    下载: 导出CSV

    表  4  研究所用结核分枝杆菌核酸样本验证结果

    Table  4.   Verification results of nucleic acid samples from Mycobacterium tuberculosis used in this research

    序号突变位点MPE延伸
    利福平(RIF)异烟肼(INH)乙胺丁醇(EMB)吡嗪酰胺(PZA)
    rpoBH526LRrpoBH526DYNrpoBQ513PLrpoBD516GV(R)rpoBH531LWrpoBD516Y(F)katGS315TNfabG-inhAembBY319SCembBG406D(R)embBM306I(R)embBM306V(F)embBG406SpncAT76PpncAH57DpncAQ10P
    MTB-01 A C A A C G G C A G G A G A C A
    MTB-02 A C A A C G Aa C A G G A G A C A
    MTB-03 A C A A C G Aa C A G G A G A C A
    MTB-04 A C A A C G Aa C A G G A G A C A
    MTB-05 A C Ta A C G G C A G G A G A C A
    MTB-06 A Ga A A C G G Ta A G G A G A C A
    MTB-07 A C A A C Ta Ca C A G G A G A C A
    MTB-08 A C A A C G G C A G G A G A C A
    MTB-09 A Ta A A C G Ca C A G G A G A C A
    MTB-10 A C A A C Ta Ca C A G G A G A C A
    MTB-11 A C A A C G G C A G G A G A C A
    MTB-12 A C A A C G G Ta A G G A G A C A
    MTB-13 A C A A Ta G Ca C A G G A Aa A C A
    MTB-14 A C A A C G Ca C A G G Ga G A C A
    MTB-15 A C A A C G Ca C A G G Ga G A C A
    MTB-16 A C A A Ta G G C Ga G G A G A C A
    MTB-17 A C A A Ta G G Ta A G G A G A C A
    MTB-18 A C A A Ta G Ca C A G Ca A G A C A
    MTB-19 A C A A Ta G G Ta A Aa G A G A C A
    MTB-20 A C A A Ta G Ca C A G Ca A G A C A
    MTB-21 A C A Ta C G G Ta A Aa G A G A C A
    MTB-22 A C A A C G G Ta A G G A G A C A
    MTB-23 A Ta A A C G Ca C A G G A G A C A
    MTB-24 A C A A Ga G Aa C A G G A G A C A
    MTB-25 A Aa A A C G G C A G G A G A C A
    MTB-26 A C A A C G G C A G G A G A C A
    MTB-27 A Ta A A C G G C A G G A G A C A
    MTB-28 A Ga A A C G Ca C A G G A G A C A
    MTB-29 Ta C A A C G Ca C A G G A G A C A
    MTB-30 A C A A Ta G G Ta A G G A G A C A
    MTB-31 A C A A Ta G G C Ga G G Ga G A C A
    MTB-32 A C A A Ta G G Ta A G G Ga G A C A
    MTB-33 Ta C A A C G Ca C A G G Ga G A C A
    MTB-34 A C A A Ta G Ca C A G Ca A G A C A
    MTB-35 A C A A Ta G Ca Ta A G G Ga G A C A
    MTB-36 Ta C A A C G Ca C A G G Ga G A C A
    MTB-37 A Ta A A C G Ca C A G G Ga G A C A
    MTB-38 A C A A Ta G G C A G Ca A G A C A
    MTB-39 A C A A Ta G Ca C A G Ca A G A C A
    MTB-40 Ga C A A C G Ca C A G G Ga G A C A
    注:a. 表示突变型,其余为野生型
    下载: 导出CSV

    表  5  研究所用结核分枝杆菌核酸样本全基因组测序结果

    Table  5.   Whole genome sequencing results of nucleic acid samples from Mycobacterium tuberculosis used in this research

    序号突变位点全基因组测序结果
    利福平异烟肼乙胺丁醇吡嗪酰胺
    rpoBkatGembBpncA
    526513516531315−15319406306765710
    MTB-01 CAC CAA GAC TCG AGC C TAT GGC ATG ACT CAC CAG
    MTB-02 CAC CAA GAC TCG AACa C TAT GGC ATG ACT CAC CAG
    MTB-03 CAC CAA GAC TCG AACa C TAT GGC ATG ACT CAC CAG
    MTB-04 CAC CAA GAC TCG AACa C TAT GGC ATG ACT CAC CAG
    MTB-05 CAC CTAa GAC TCG AGC C TAT GGC ATG ACT CAC CAG
    MTB-06 GACa CAA GAC TCG AGC Ta TAT GGC ATG ACT CAC CAG
    MTB-07 CAC CAA TACa TCG ACCa C TAT GGC ATG ACT CAC CAG
    MTB-08 CAC CAA GAC TCG AGC C TAT GGC ATG ACT CAC CAG
    MTB-09 TACa CAA GAC TCG ACCa C TAT GGC ATG ACT CAC CAG
    MTB-10 CAC CAA TACa TCG ACCa C TAT GGC ATG ACT CAC CAG
    MTB-11 CAC CAA GAC TCG AGC C TAT GGC ATG ACT CAC CAG
    MTB-12 CAC CAA GAC TCG AGC Ta TAT GGC ATG ACT CAC CAG
    MTB-13 CAC CAA GAC TTGa ACCa C TAT AGCa ATG ACT CAC CAG
    MTB-14 CAC CAA GAC TCG ACCa C TAT GGC GTGa ACT CAC CAG
    MTB-15 CAC CAA GAC TCG ACCa C TAT GGC GTGa ACT CAC CAG
    MTB-16 CAC CAA GAC TTGa AGC C TGTa GGC ATG ACT CAC CAG
    MTB-17 CAC CAA GAC TTGa AGC Ta TAT GGC ATG ACT CAC CAG
    MTB-18 CAC CAA GAC TTGa ACCa C TAT GGC ATCa ACT CAC CAG
    MTB-19 CAC CAA GAC TTGa AGC Ta TAT GACa ATG ACT CAC CAG
    MTB-20 CAC CAA GAC TTGa ACCa C TAT GGC ATCa ACT CAC CAG
    MTB-21 CAC CAA GTCa TCG AGC Ta TAT GACa ATG ACT CAC CAG
    MTB-22 CAC CAA GAC TCG AGC Ta TAT GGC ATG ACT CAC CAG
    MTB-23 TACa CAA GAC TCG ACCa C TAT GGC ATG ACT CAC CAG
    MTB-24 CAC CAA GAC TGGa AACa C TAT GGC ATG ACT CAC CAG
    MTB-25 AACa CAA GAC TCG AGC C TAT GGC ATG ACT CAC CAG
    MTB-26 CAC CAA GAC TCG AGC C TAT GGC ATG ACT CAC CAG
    MTB-27 TACa CAA GAC TCG AGC C TAT GGC ATG ACT CAC CAG
    MTB-28 GACa CAA GAC TCG ACCa C TAT GGC ATG ACT CAC CAG
    MTB-29 CTCa CAA GAC TCG ACCa C TAT GGC ATG ACT CAC CAG
    MTB-30 CAC CAA GAC TTGa AGC Ta TAT GGC ATG ACT CAC CAG
    MTB-31 CAC CAA GAC TTGa AGC C TGTa GGC ATG ACT CAC CAG
    MTB-32 CAC CAA GAC TTGa AGC Ta TAT GGC GTGa ACT CAC CAG
    MTB-33 CTCa CAA GAC TCG ACCa C TAT GGC GTGa ACT CAC CAG
    MTB-34 CAC CAA GAC TTGa ACCa C TAT GGC ATCa ACT CAC CAG
    MTB-35 CAC CAA GAC TTGa ACCa Ta TAT GGC GTGa ACT CAC CAG
    MTB-36 CTCa CAA GAC TCG ACCa C TAT GGC GTGa ACT CAC CAG
    MTB-37 TACa CAA GAC TCG ACCa C TAT GGC GTGa ACT CAC CAG
    MTB-38 CAC CAA GAC TTGa AGC C TAT GGC ATCa ACT CAC CAG
    MTB-39 CAC CAA GAC TTGa ACCa C TAT GGC ATCa ACT CAC CAG
    MTB-40 CGCa CAA GAC TCG ACCa C TAT GGC GTGa ACT CAC CAG
    注:a. 表示突变型,其余为野生型
    下载: 导出CSV
  • [1] World Health Organization. Global tuberculosis report 2022[R]. Geneva: World Health Organization, 2022.
    [2] Bansal R, Sharma D, Singh R. Tuberculosis and its treatment: an overview[J]. Mini-Rev Med Chem, 2018, 18(1): 58–71. DOI:  10.2174/1389557516666160823160010.
    [3] Zumla AI, Gillespie SH, Hoelscher M, et al. New antituberculosis drugs, regimens, and adjunct therapies: needs, advances, and future prospects[J]. Lancet Infect Dis, 2014, 14(4): 327–340. DOI: 10.1016/S1473−3099(13)70328−1.
    [4] Kurz SG, Furin JJ, Bark CM. Drug-resistant tuberculosis: challenges and progress[J]. Infect Dis Clin North Am, 2016, 30(2): 509–522. DOI:  10.1016/j.idc.2016.02.010.
    [5] Gygli SM, Borrell S, Trauner A, et al. Antimicrobial resistance in Mycobacterium tuberculosis: mechanistic and evolutionary perspectives[J]. FEMS Microbiol Rev, 2017, 41(3): 354–373. DOI:  10.1093/femsre/fux011.
    [6] Nguyen L. Antibiotic resistance mechanisms in M. tuberculosis: an update[J]. Arch Toxicol, 2016, 90(7): 1585–1604. DOI: 10.1007/s00204−016−1727−6.
    [7] Khawbung JL, Nath D, Chakraborty S. Drug resistant Tuberculosis: a review[J]. Comp Immunol Microbiol Infect Dis, 2021, 74: 101574. DOI:  10.1016/j.cimid.2020.101574.
    [8] Narang A, Garima K, Porwal S, et al. Potential impact of efflux pump genes in mediating rifampicin resistance in clinical isolates of Mycobacterium tuberculosis from India[J]. PLoS One, 2019, 14(9): e0223163. DOI:  10.1371/journal.pone.0223163.
    [9] Miotto P, Zhang Y, Cirillo DM, et al. Drug resistance mechanisms and drug susceptibility testing for tuberculosis[J]. Respirology, 2018, 23(12): 1098–1113. DOI:  10.1111/resp.13393.
    [10] Schön T, Miotto P, Köser CU, et al. Mycobacterium tuberculosis drug-resistance testing: challenges, recent developments and perspectives[J]. Clin Microbiol Infect, 2017, 23(3): 154–160. DOI:  10.1016/j.cmi.2016.10.022.
    [11] Wang LQ, Yang JH, Chen L, et al. Whole-genome sequencing of Mycobacterium tuberculosis for prediction of drug resistance[J]. Epidemiol Infect, 2022, 150: e22. DOI:  10.1017/S095026882100279X.
    [12] Chen CY, Weng JY, Huang HH, et al. A new oligonucleotide array for the detection of multidrug and extensively drug-resistance tuberculosis[J]. Sci Rep, 2019, 9(1): 4425. DOI: 10.1038/s41598−019−39339−3.
    [13] Cohen KA, Manson AL, Desjardins CA, et al. Deciphering drug resistance in Mycobacterium tuberculosis using whole-genome sequencing: progress, promise, and challenges[J]. Genome Med, 2019, 11(1): 45. DOI: 10.1186/s13073−019−0660−8.
    [14] Machado D, Couto I, Viveiros M. Advances in the molecular diagnosis of tuberculosis: from probes to genomes[J]. Infect Genet Evol, 2019, 72: 93–112. DOI:  10.1016/j.meegid.2018.11.021.
    [15] Xiao D, Zhao F, Zhang HF, et al. Novel strategy for typing Mycoplasma pneumoniae isolates by use of matrix-assisted laser desorption ionization-time of flight mass spectrometry coupled with ClinProTools[J]. J Clin Microbiol, 2014, 52(8): 3038–3043. DOI: 10.1128/JCM.01265−14.
    [16] Wang P, Li RQ, Wang L, et al. Proteomic analyses of Acinetobacter baumannii clinical isolates to identify drug resistant mechanism[J]. Front Cell Infect Microbiol, 2021, 11: 625430. DOI:  10.3389/fcimb.2021.625430.
    [17] Zhao F, Lu JX, Lu B, et al. A novel strategy for the detection of SARS-CoV-2 variants based on multiplex PCR-mass spectrometry minisequencing technology[J]. Microbiol Spectr, 2021, 9(3): e0126721. DOI: 10.1128/Spectrum.01267−21.
    [18] Zhao F, Zhang JZ, Wang XM, et al. A multisite SNP genotyping and macrolide susceptibility gene method for Mycoplasma pneumoniae based on MALDI-TOF MS[J]. iScience, 2021, 24(5): 102447. DOI:  10.1016/j.isci.2021.102447.
    [19] Hille M, Dickey A, Robbins K, et al. Rapid differentiation of Moraxella bovoculi genotypes 1 and 2 using MALDI-TOF mass spectrometry profiles[J]. J Microbiol Methods, 2020, 173: 105942. DOI:  10.1016/j.mimet.2020.105942.
    [20] Trembizki E, Smith H, Lahra MM, et al. High-throughput informative single nucleotide polymorphism-based typing of Neisseria gonorrhoeae using the Sequenom MassARRAY iPLEX platform[J]. J Antimicrob Chemother, 2014, 69(6): 1526–1532. DOI:  10.1093/jac/dkt544.
    [21] Zaw MT, Emran NA, Lin Z. Mutations inside rifampicin-resistance determining region of rpoB gene associated with rifampicin-resistance in Mycobacterium tuberculosis[J]. J Infect Public Health, 2018, 11(5): 605–610. DOI:  10.1016/j.jiph.2018.04.005.
    [22] Singh A, Grover S, Sinha S, et al. Mechanistic principles behind molecular mechanism of rifampicin resistance in mutant RNA polymerase beta subunit of Mycobacterium tuberculosis[J]. J Cell Biochem, 2017, 118(12): 4594–4606. DOI:  10.1002/jcb.26124.
    [23] Purkan, Ihsanawati, Natalia D, et al. Mutation of katG in a clinical isolate of Mycobacterium tuberculosis: effects on catalase-peroxidase for isoniazid activation[J]. Ukr Biochem J, 2016, 88(5): 71–81. DOI:  10.15407/ubj88.05.071.
    [24] Tulyaprawat O, Chaiprasert A, Chongtrakool P, et al. Distribution of embB mutations of Thai clinical isolates of ethambutol-resistant Mycobacterium tuberculosis[J]. J Glob Antimicrob Resist, 2019, 18: 115–117. DOI:  10.1016/j.jgar.2019.05.033.
    [25] Che Y, Bo DY, Lin X, et al. Phenotypic and molecular characterization of pyrazinamide resistance among multidrug-resistant Mycobacterium tuberculosis isolates in Ningbo, China[J]. BMC Infect Dis, 2021, 21(1): 605. DOI: 10.1186/s12879−021−06306−1.
    [26] Yadon AN, Maharaj K, Adamson JH, et al. A comprehensive characterization of PncA polymorphisms that confer resistance to pyrazinamide[J]. Nat Commun, 2017, 8(1): 588. DOI: 10.1038/s41467−017−00721−2.
    [27] 余艳芳, 赵开顺, 屠春林, 等. 核酸质谱检测结核分枝杆菌耐药方法的建立[J]. 临床肺科杂志,2021,26(1):74–81. DOI:10.3969/j.issn.1009−6663.2021.01.017.

    Yu YF, Zhao KS, Tu CL, et al. Establishment of MassARRAY system for detection of drug resistance of Mycobacterium tuberculosis[J]. J Clin Pulmonary Med, 2021, 26(1): 74–81. DOI: 10.3969/j.issn.1009−6663.2021.01.017.
  • 加载中
图(1) / 表(5)
计量
  • 文章访问数:  61
  • HTML全文浏览量:  54
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-16
  • 录用日期:  2023-05-04
  • 网络出版日期:  2023-05-05

目录

    /

    返回文章
    返回

    在线交流

    防诈骗公告

    大家好:近期有不法分子以本刊编辑身份添加作者微信,请务必提高警惕!本刊关于稿件的一切事项通知均采用编辑部唯一邮箱(jbjc@icdc.cn)和座机(010-58900732)联系作者,且在录用稿件后仅收取版面费,无其他任何名目费用(如审稿费和加急费等),非编辑部邮箱发送的本刊收费用通知等均为诈骗,不要随意汇入款项!如有可疑及时致电编辑部核实确认!