Surveillance for tick and humans infection with Tacheng tick virus 5 in Xinjiang Uygur Autonomous Region, 2019−2021
-
摘要:
目的 对塔城蜱病毒5(Tacheng Tick Virus 5, TcTV-5)进行检测,为新发蜱媒传染病的监测提供参考。 方法 2019 — 2021年采集新疆维吾尔自治区(新疆)6县(市)的寄生蜱和游离蜱451只,对其分别进行形态学和分子生物学鉴定;于2021年收集新疆图木舒克市农牧民血液样本280份,运用反转录聚合酶链式反应(RT-PCR)技术,对收集到的所有样本进行TcTV-5感染阳性率的检测,构建基因进化树,分析遗传进化关系,对检测结果进行分子流行病学分析。 结果 经形态和分子鉴定,在新疆采集到的蜱分属于3属3种,包括璃眼蜱属的亚洲璃眼蜱、革蜱属的边缘革蜱和扇头蜱属的图兰扇头蜱;新疆蜱与人中均可检测到TcTV-5,6个县(市)的蜱阳性率为3.33% (2/60)~36.11% (26/72),图木舒克市280份人血样本的阳性率为2.50%(7/280)。 结论 TcTV-5在新疆蜱与人血中均可被检出;在多种蜱种(亚洲璃眼蜱、边缘革蜱、图兰扇头蜱)中均可检测到,边缘革蜱阳性率最高。 Abstract:Objective To detect Tacheng tick virus 5 (TcTV-5) in ticks and humans in Xinjiang Uygur Autonomous Region(Xinjiang), and provide reference for the detection of new tick-borne infectious diseases. Methods A total of 451 free ticks and parasitic ticks were collected from 6 counties in Xinjiang from 2019 to 2021. Morphological and molecular biological tests were performed to determine tick species. In 2021, a total of 280 blood samples of farmers and herdsmen in Tumushuke of Xinjiang were collected, Reverse transcription-polymerase chain reaction (RT-PCR) was used to detect TcTV-5 in collected samples, then gene phylogenetic tree was constructed, the genetic evolutionary relationship was analyzed, and the results were analyzed by molecular epidemiological method. Results According to morphological and molecular identifications, the ticks collected in Xinjiang were classified into three genera and three species, including Hyalomma asiaticum, Dermacentor marginatus and Rhipicephalus turanicus. TcTV-5 was detected in both ticks and human blood samples.The positive rates of TcTV-5 in ticks in 6 counties ranged from 3.33% (2/60)–36.11% (26/72), and the positive rates of TcTV-5 was 2.50% (7/280) in 280 human blood samples from Tumushuke. Conclusion TcTV-5 can be detected in both ticks and human blood in Xinjiang. The ticks carrying TcTV-5 included (H. asiaticum, D. marginatus and R. turanicus)and the positive rate was highest in D. marginatus. -
Key words:
- Tacheng tick virus 5 /
- Tick /
- Xinjiang Uygur Autonomous Region /
- Tick-borne disease
-
图 1 人和蜱的塔城蜱病毒 5的L基因进化树
注:●. 蜱中携带的塔城蜱病毒5基因; ■. 人血中携带的塔城蜱病毒5基因; Changping Tick Virus 3.昌平蜱病毒3; Genoa Virus.热那亚病毒;Lonestar Tick Chuvirus 1.孤星蜱楚病毒1;Wuhan Tick Virus 2.武汉蜱病毒2; Bole Tick Virus 3.博乐蜱病毒3; Changping Tick Virus 2.昌平蜱病毒2;Karukera Tick Virus.卡鲁凯拉蜱病毒;Wuhan Mosquito Virus 8.武汉蚊病毒8; Blacklegged Tick Chuvirus 2.黑腿硬蜱楚病毒2; Hubei Chuvirus-like Virus 3.湖北类楚病毒3; Lampyris Noctiluca Chuvirus-lie Virus 1.大萤火虫类楚病毒1; Wuchang Cockraoch Virus 3.武昌蟑螂病毒3; Lishi Spider Virus 1.李氏蜘蛛病毒1; Hubei Chuvirus-like Virus 1.湖北类楚病毒1; Tacheng Tick Virus 4.塔城蜱病毒4
Figure 1. Phylogenetic tree of L gene of Tacheng tick virus 5 from humans and ticks
表 1 2019-2021年新疆维吾尔自治区蜱采集详细信息
Table 1. Detailed information of tick collection in Xinjiang Uygur Autonomous Region, 2019−2021
采集地点 采集年份 寄生蜱(只) 游离蜱(只) 寄生宿主 阿拉山口市 2020 72 / 牛 玛纳斯县 2021 72 36 羊 石河子市 2021 60 / 骆驼 巴楚县 2019 / 85 / 温泉县 2021 / 60 / 塔城市 2021 60 / 牛 合计 264 181 注:/ . 未采集到蜱或无寄生宿主 表 2 塔城蜱病毒5引物序列信息
Table 2. Primer sequence information of Tacheng Tick Virus 5
病毒 引物
名称扩增
片段引物序列(5' ~3') 区间位点(bp) 片段大小(bp) Tacheng Tick Virus 5 TC5-F1 L TGGTCAGATGGGAGGAAT 2 105 605 TC5-F2 TATGGTTCCTCCAAAAGC 2 243 467 TC5-R1 CCGCCCTAGCAAAGAAAT 2 709 表 3 新疆维吾尔自治区蜱携带塔城蜱病毒 5的阳性率
Table 3. Positive rate of Tacheng Tick Virus 5 carried by ticks in Xinjiang Uygur Autonomous Region
地区 蜱种鉴定结果 阳性率(%) (a/b) 阿拉山口市 边缘革蜱 36.11 (26/72) 玛纳斯县 亚洲璃眼蜱 寄生:18.06 (13/72) 游离:0.00 (0/36) 石河子市 图兰扇头蜱 3.33 (2/60) 巴楚县 亚洲璃眼蜱 3.53 (3/85) 温泉县 边缘革蜱 11.67 (7/60) 塔城市 边缘革蜱 26.67 (16/60) 注:a. 阳性样本总数;b. 实验样本总数 -
[1] 王斐. 蜱媒传染病的流行特征及防控策略[J]. 热带病与寄生虫学,2016,14(1):54–56,50. DOI:10.3969/j.issn.1672−2302.2016.01.020.Wang F. Epidemic characteristics and control strategies of tick-borne infectious diseases[J]. J Trop Dis Parasitol, 2016, 14(1): 54–56,50. DOI: 10.3969/j.issn.1672−2302.2016.01.020. [2] Jones KE, Patel NG, Levy MA, et al. Global trends in emerging infectious diseases[J]. Nature, 2008, 451(7181): 990–993. DOI: 10.1038/nature06536. [3] Bush LM, Vazquez-Pertejo MT. Tick borne illness—Lyme disease[J]. Dis Mon, 2018, 64(5): 195–212. DOI: 10.1016/j.disamonth.2018.01.007. [4] Wada T, Mori H, Kida K, et al. Japanese spotted fever with post-infectious encephalitis[J]. IDCases, 2022, 31: e01658. DOI: 10.1016/j.idcr.2022.e01658. [5] Dudas G, Obbard DJ. Are arthropods at the heart of virus evolution?[J]. Elife, 2015, 4: e06837. DOI: 10.7554/eLife.06837. [6] Li CX, Shi M, Tian JH, et al. Unprecedented genomic diversity of RNA viruses in arthropods reveals the ancestry of negative-sense RNA viruses[J]. Elife, 2015, 4: e05378. DOI: 10.7554/eLife.05378. [7] Di Paola N, Dheilly NM, Junglen S, et al. Jingchuvirales: a new taxonomical framework for a rapidly expanding order of unusual monjiviricete viruses broadly distributed among arthropod subphyla[J]. Appl Environ Microbiol, 2022, 88(6): e0195421. DOI: 10.1128/AEM.01954−21. [8] 于心, 叶瑞玉, 龚正达. 新疆蜱类志[M]. 乌鲁木齐: 新疆科技卫生出版社, 1997: 1–314.Yu X, Ye RY, Gong ZD. The ticks fauna of Xinjiang[M]. Urumqi: Xinjiang Scientific, Technological and Medical Publishing House, 1997: 1–314. [9] Estrada-Peña A, Mihalca AD, Petney TN. Ticks of Europe and North Africa: a guide to species identification[M]. Cham: Springer, 2017: 1–337. DOI: 10.1007/978-3-319-63760-0. [10] Aung A, Kaewlamun W, Narapakdeesakul D, et al. Molecular detection and characterization of tick-borne parasites in goats and ticks from Thailand[J]. Ticks Tick-Borne Dis, 2022, 13(3): 101938. DOI: 10.1016/j.ttbdis.2022.101938. [11] Kumar R. Molecular markers and their application in the monitoring of acaricide resistance in Rhipicephalus microplus[J]. Exp Appl Acarol, 2019, 78(2): 149–172. DOI: 10.1007/s10493−019−00394−0. [12] Thinnabut K, Rodpai R, Sanpool O, et al. Genetic diversity of tick (Acari: Ixodidae) populations and molecular detection of Anaplasma and Ehrlichia infesting beef cattle from upper-northeastern Thailand[J]. Infect Genet Evol, 2023, 107: 105394. DOI: 10.1016/j.meegid.2022.105394. [13] Guo R, Shen S, Zhang YF, et al. A new strain of Crimean-Congo hemorrhagic fever virus isolated from Xinjiang, China[J]. Virol Sin, 2017, 32(1): 80–88. DOI: 10.1007/s12250−016−3936−9. [14] Liu H, Gao XY, Liang GD. Newly recognized mosquito-associated viruses in mainland China, in the last two decades[J]. Virol J, 2011, 8: 68. DOI: 10.1186/1743−422X−8−68. [15] 尤祥, 巴特尔, 郝文利, 等. 阿巴嘎旗蒙古族中小学生布鲁菌病饮食行为相关因素分析[J]. 中国学校卫生,2021,42(2):287–290. DOI:10.16835/j.cnki.1000−9817.2021.02.031.You X, Battle, Hao WL, et al. Eating behaviors related to brucellosis infection in Mongolian middle school students in Abaga Banner, Inner Mongolia[J]. Chin J Sch Health, 2021, 42(2): 287–290. DOI: 10.16835/j.cnki.1000−9817.2021.02.031. -