Impact of non-pharmaceutical interventions on incidence of notifiable infectious disease in Jingzhou, Hubei
-
摘要:
目的 评价非药物性干预措施(NPIs)对湖北省荆州市法定传染病(NIDs)发病的影响。 方法 收集2014年12月29日(2015年1周)至2021年1月3日(2020年53周)荆州市NIDs周发病数。 2015年1周至2020年5周作为历史数据拟合贝叶斯结构时间序列(BSTS)模型并预测2020年6—53周NIDs发病数。 2020年6—53周实际值分别与2015—2019年同期NIDs发病数、模型预测值比较,采用相对下降(RR)评价NPIs对NIDs的影响。 分病种、分性别、分年龄、分类(甲乙类、丙类;呼吸道、肠道、血源及性传播、自然疫源性)、分时期(6—18周、19—24周、25—53周)进行亚组分析。 结果 2020年6—53周累计报告NIDs 20种18 952例,较2015—2019年同期下降45.26%。 基于BSTS模型,2020年6—53周较预期下降60.42%(95% CI: 50.98%~69.66%),其中甲乙类NIDs、丙类NIDs分别下降36.63% (95% CI: 30.60%~43.19%)、60.72% (95% CI: 33.97%~85.32%)。 6—18周、19—24周、25—53周分别下降70.29% (95% CI: 56.88%~83.29%)、61.71% (95% CI: 45.34%~79.13%)、55.68% (95% CI: 45.60%~67.29%)。 从传播途径来看,呼吸道传染病下降幅度最大(RR=61.53%,95% CI: 22.60%~100.87%);其次为肠道传染病 (RR=19.72%,95% CI: 2.98%~35.29%)。 分年龄来看,15~64岁年龄组下降幅度最大(RR=72.74%, 95% CI: 65.68%~80.10%),其次为0~14岁年龄组(RR=54.51%,95% CI: 19.78%~87.15%)。 分地区来看,2020年不同地区新型冠状病毒肺炎(新冠肺炎)发病率与降幅存在正相关性( $ {r_s} $ = 0.714,P=0.058)。 RR最大的前5位病种分别为风疹(999.77%,95% CI: −2326.82%~4510.97%)、流行性感冒(68.93%, 95% CI: 91.76~117.10%)、猩红热(88.59%, 95% CI: 64.78%~112.12%)、手足口病(86.09%, 95% CI: 77.46%~94.55%)、急性出血性结膜炎(78.54%, 95% CI: 28.11%~127.26%)。结论 NPIs在控制新冠肺炎疫情同时,大幅降低湖北省荆州市NIDs发病数,其效果在人群、疾病、时间和空间方面具有异质性。 Abstract:Objective To evaluate the impact of non-pharmaceutical interventions (NPIs) on the incidence of notifiable infectious disease in Jingzhou of Hubei province. Methods The weekly incidence of notifiable infectious disease in Jingzhou from December 29, 2014 (1st week in 2015) to January 3, 2021 (53rd week in 2020) was collected. The 1st week of 2015 to the 5th week of 2020 was used to fit a Bayesian structural time series (BSTS) model and predict the incidence of notifiable infectious disease from 6th to 53rd weeks in 2020. The incidence of notifiable infectious disease from 6th week to 53rd week in 2020 was compared with those during the same periods of 2015−2019 and the predicted value of the BSTS model in 2020, and the relative reduction (RR) was used to evaluate the impact of NPIs on the incidence of notifiable infectious disease. Disease types, gender, age groups, disease classification (class A, B and C; respiratory infectious diseases, intestinal infectious diseases, blood-borne and sexually transmitted infections, natural focal diseases), and periods (6th−18th week, 19th−24th week, 25th−53rd week) were used for subgroup analysis. Results A total of 18 952 cases of 20 types of notifiable infectious diseases were reported in Jingzhou from 6th week to 53rd week in 2020, a decrease of 45.26% compared with the same periods during 2015− 2019. Based on the BSTS model, a decrease of 60.42% was than expected during 6th week−53rd week of 2020 (95% CI: 50.98%–69.66%). The notifiable infectious diseases in class A and B and in class C decreased by 36.63% (95% CI: 30.60%–43.19%) and 60.72% (95% CI: 33.97%–85.32%), respectively. The incidence of notifiable infectious disease during 6th week−18th week, 19th week−24th week, and 25th week−53rd week in 2020 decreased by 70.29% (95% CI: 56.88%–83.29%), 61.71% (95% CI: 45.34%–79.13%), 55.68% (95% CI: 45.60%–67.29%) respectively. In terms of transmission routes, the incidence of respiratory infectious disease had the greatest decrease (RR=61.53%, 95% CI: 22.60%–100.87%), followed by intestinal infectious disease (RR=19.72%, 95% CI: 2.98%–35.29%). In terms of age, the largest decrease was found for people aged 15–64 years (RR=72.74%, 95% CI: 65.68%–80.10%), followed by children aged 0–14 years (RR=54.51%, 95% CI: 19.78%–87.15%). There was a positive correlation between the incidence of COVID-19 and the incidence decrease in different areas in 2020 ( $ {r_s} $ =0.714, P=0.058). The top 5 diseases with the largest incidence decrease were rubella (999.77%, 95% CI: −2326.82%–4510.97%), influenza (68.93%, 95% CI: 91.76%–117.10%), scarlet fever (88.59%, 95% CI: 64.78%–112.12%), hand foot and mouth disease (86.09%, 95% CI: 77.46%–94.55%) and acute hemorrhagic conjunctivitis (78.54%, 95% CI: 28.11%–127.26%).Conclusion The NPIs against COVID-19 could significantly reduce the incidence of notifiable infectious disease in Jingzhou, and its effect had heterogeneity in terms of population, disease, time and space. -
Key words:
- Non-pharmaceutical interventions /
- Infectious disease /
- Public health measure /
- COVID-19 /
- Jingzhou
-
表 1 荆州市2020年6—53周病例数与2015—2019年同期法定传染病年均病例数比较
Table 1. Comparison case number of notifiable infectious disease between week 6–53 in 2020 and week 6–53 during 2015–2019 in Jingzhou
分类 6—53周 6—18周 19—24周 25—53周 2015—
2019年2020年 RR(%) 2015—
2019年2020年 RR(%) 2015—
2019年2020年 RR(%) 2015—
2019年2020年 RR(%) 甲乙类传染病 17 099 11 900 30.41 4 866 2 790 42.66 2 209 1 734 21.50 10 024 7 376 26.42 丙类传染病 17 526 7 052 59.76 5 147 1 032 79.95 2 794 728 73.94 9 585 5 292 44.79 呼吸道传染病 8 970 4 945 44.87 3 015 1 673 44.51 979 542 44.64 4 976 2 730 45.14 肠道传染病 13 496 5 648 58.15 3 560 606 82.98 2 482 609 75.46 7 454 4 433 40.53 血源及性传播疾病 11 615 8 052 30.68 3 314 1 492 54.98 1 477 1 186 19.70 6 824 5 374 21.25 自然疫源性传染病 544 307 43.57 124 51 58.87 65 125 −92.31 355 131 63.10 性别 女性 14 579 8 062 44.70 4 244 1 652 61.07 2 064 1 024 50.39 8 271 5 386 34.88 男性 20 046 10 890 45.67 5 769 2 170 62.39 2 939 1 438 51.07 11 338 7 282 35.77 年龄组(岁) 0~14 14 729 5 219 64.57 4 280 712 83.36 2 537 432 82.97 7 912 4 075 48.50 15~64 15 735 10 236 34.95 4 567 2 370 48.11 1 951 1 510 22.60 9 217 6 356 31.04 ≥65 4 161 3 497 15.96 1 166 740 36.54 515 520 −0.97 2 480 2 237 9.80 地区 沙市区 4 888 1 884 61.46 1 294 400 69.09 713 223 68.72 2 881 1 261 56.23 荆州区 3 978 1 552 60.99 1 151 322 72.02 633 216 65.88 2 194 1 014 53.78 公安县 5 619 3 154 43.87 1 559 565 63.76 831 378 54.51 3 229 2 211 31.53 监利市 4 352 3 098 28.81 1 204 656 45.51 619 444 28.27 2 529 1 998 21.00 江陵县 3 009 1 595 46.99 856 305 64.37 426 265 37.79 1 727 1 025 40.65 石首市 3 809 2 377 37.60 1 138 472 58.52 561 275 50.98 2 110 1 630 22.75 洪湖市 4 077 2 409 40.91 1 197 477 60.15 545 285 47.71 2 335 1 647 29.46 松滋市 4 893 2 883 41.08 1 614 625 61.28 675 376 44.30 2 604 1 882 27.73 合计 34 625 18 952 45.26 10 013 3 822 61.83 5 003 2 462 50.79 19 609 12 668 35.40 表 2 基于BSTS模型的2020年6—53周荆州市法定传染病预计相对下降情况[%(95% CI)]
Table 2. RR of notifiable infectious diseases in Jingzhou based onBSTS model, week 6–53 in 2020 (%)
分类 6—53周 6—18周 19—24周 25—53周 甲乙类传染病 36.63(30.6~43.19) 43.80(35.18~53.12) 26.05(13.74~38.13) 35.68(28.42~43.49) 丙类传染病 60.72(33.97~85.32) 81.57(51.46~112.17) 72.71(33.04~110.1) 45.35(9.61~77.17) 呼吸道传染病 61.53(22.6~100.87) 71.78(34.51~109.67) 66.82(1.01~131.53) 52.37(2.14~105.48) 肠道传染病 19.72(2.98~35.29) 69.97(50.23~89.51) 42.05(14.71~67.64) −11.75(−33.3~8.87) 血源及性传播疾病 18.07(6.53~29.48) 46.41(34.15~58.35) 5.68(−11.02~22.37) 7.12(−6.63~20.41) 自然疫源性传染病 −140.51(−313.92~43.95) −44.37(−348.3~210.84) −597.74(−935.69~−233.42) −76.06(−300.72~151.78) 性别 女性 62.04(51.18~72.15) 70.90(56.73~85.25) 63.99(46.6~83.18) 57.65(45.64~69.28) 男性 54.59(44.01~65.18) 66.37(50.65~80.65) 54.98(35.71~74.06) 49.20(37.63~61.48) 年龄组(岁) 0~14 54.51(19.78~87.15) 80.67(43.39~118.72) 75.26(24.49~123.41) 32.59(−15.42~76.32) 15~64 72.74(65.68~80.1) 71.19(63.06~79.52) 63.27(53.32~73.21) 74.79(67.23~82.41) ≥65 26.14(20.13~31.95) 41.42(31.97~50.12) 13.55(1.15~26.07) 22.05(15.1~28.99) 地区 沙市区 72.64(54.45~90.43) 77.18(51.71~103.24) 75.92(45.17~109.87) 70.02(49.75~91) 荆州区 68.26(53.31~83.57) 75.20(52.3~96.87) 68.16(41.81~98.97) 65.16(45.1~82.39) 公安县 42.06(34.26~50) 60.78(48.51~73.73) 47.25(30.43~63.85) 32.71(23.3~42.86) 监利市 46.89(39.48~54.21) 55.43(44.13~66.53) 39.16(24.32~53.88) 44.99(35.81~53.61) 江陵县 52.57(30.62~74.23) 65.71(33.02~94.55) 41.99(0.1~84.35) 49.04(23.94~76.48) 石首市 67.21(51.89~82.72) 73.15(48.91~99.21) 71.12(43.3~103.34) 64.06(46.41~82.31) 洪湖市 79.00(70.99~86.5) 81.38(71.81~91.07) 79.19(67.84~91.1) 78.16(70.16~86.29) 松滋市 68.14(56.19~80.47) 73.28(54.04~90.59) 65.47(38.87~91.66) 66.49(52.55~81.31) 合计 60.42(50.98~69.66) 70.29(56.88~83.29) 61.71(45.34~79.13) 55.68(45.6~67.29) -
[1] Zhu N, Zhang D, Wang W, et al. A novel coronavirus from patients with pneumonia in China, 2019[J]. N Engl J Med, 2020, 382(8): 727–733. DOI: 10.1056/NEJMoa2001017. [2] Organization WH. Coronavirus disease 2019 (COVID-19): situation report—51[EB/OL].(2020−03−21)[2022−02−10]. https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200320-sitrep-60-covid-19.pdf?sfvrsn=8894045a_2. [3] Perra N. Non-pharmaceutical interventions during the COVID-19 pandemic: A review[J]. Phys Rep, 2021, 913: 1–52. DOI: 10.1016/j.physrep.2021.02.001. [4] Ullrich A, Schranz M, Rexroth U, et al. Impact of the COVID-19 pandemic and associated non-pharmaceutical interventions on other notifiable infectious diseases in Germany: An analysis of national surveillance data during week 1-2016 - week 32-2020[J]. Lancet Reg Health Eur, 2021, 6: 100103. DOI: 10.1016/j.lanepe.2021.100103. [5] Brueggemann AB, Jansen VRM, Shaw D, et al. Changes in the incidence of invasive disease due to Streptococcus pneumoniae, Haemophilus influenzae, and Neisseria meningitidis during the COVID-19 pandemic in 26 countries and territories in the Invasive Respiratory Infection Surveillance Initiative: a prospective analysis of surveillance data[J]. Lancet Digit Health, 2021, 3(6): e360–e370. DOI: 10.1016/S2589−7500(21)00077−7. [6] Xiao J, Dai J, Hu J, et al. Co-benefits of nonpharmaceutical intervention against COVID-19 on infectious diseases in China: a large population-based observational study[J]. Lancet Reg Health West Pac, 2021, 17: 100282. DOI: 10.1016/j.lanwpc.2021.100282. [7] Chen B, Wang M, Huang X, et al. Changes in incidence of notifiable infectious diseases in China under the Pprevention and control measures of COVID-19[J]. Front Public Health, 2021, 9: 728768. DOI: 10.3389/fpubh.2021.728768. [8] Adegbija O, Walker J, Smoll N, et al. Notifiable diseases after implementation of COVID-19 public health prevention measures in Central Queensland, Australia[J]. Commun Dis Intell (2018) , 2021: 45. DOI: 10.33321/cdi.2021.45.11. [9] Geng MJ, Zhang HY, Yu LJ, et al. Changes in notifiable infectious disease incidence in China during the COVID-19 pandemic[J]. Nat Commun, 2021, 12(1): 6923. DOI: 10.1038/s41467−021−27292−7. [10] Lai S, Ruktanonchai NW, Zhou L, et al. Effect of non-pharmaceutical interventions to contain COVID-19 in China[J]. Nature, 2020, 585(7825): 410–413. DOI: 10.1038/s41586−020−2293−x. [11] Li Z, Chen Q, Feng L, et al. Active case finding with case management: the key to tackling the COVID-19 pandemic[J]. Lancet, 2020, 396(10243): 63–70. DOI: 10.1016/S0140−6736(20)31278−2. [12] 曾旻敏, 刘天, 田克卿, 等. 2020年湖北省荆州市新型冠状病毒肺炎疫情流行特征分析[J]. 疾病监测,2021,36(2):120–126. DOI: 10.3784/jbjc.202008100268.Zeng MM, Liu T, Tian KQ, et al. Epidemiological characteristics of coronavirus diseases 2019 in Jingzhou, Hubei, 2020[J]. Dis Surveill, 2021, 36(2): 120–126. DOI: 10.3784/jbjc.202008100268. [13] 蔺茂文, 刘天, 田克卿, 等. 荆州市新型冠状病毒肺炎时空分布特征分析[J]. 上海交通大学学报: 医学版,2020,40(5):566–572.Lin MW, Liu T, Tian KQ, et al. Spatial-temporal distribution of coronavirus disease 2019 in Jingzhou city[J]. Journal of Shanghai JIAOTONG university:medical science, 2020, 40(5): 566–572. [14] de Vocht F, Tilling K, Pliakas T, et al. The intervention effect of local alcohol licensing policies on hospital admission and crime: a natural experiment using a novel Bayesian synthetictime-series method[J]. J Epidemiol Community Health, 2017, 71(9): 912–918. DOI: 10.1136/jech−2017−208931. [15] Amini P, Almasi-Hashiani A, Sahraian MA, et al. Multiple sclerosis projection in Tehran, Iran using Bayesian structural time series[J]. BMC Neurol, 2021, 21(1): 235. DOI: 10.1186/s12883−021−02281−x. [16] Scott SL, Varian HR. Predicting the present with Bayesian structural time series[J]. International Journal of Mathematical Modelling and Numerical Optimisation, 2014, 5(1-2): 4–23. DOI: 10.1504/IJMMNO.2014.059942. [17] Talkhi N, Akhavan F N, Ataei Z, et al. Modeling and forecasting number of confirmed and death caused COVID-19 in IRAN: A comparison of time series forecasting methods[J]. Biomed Signal Process Control, 2021, 66: 102494. DOI: 10.1016/j.bspc.2021.102494. [18] Hibiya K, Iwata H, Kinjo T, et al. Incidence of common infectious diseases in Japan during the COVID-19 pandemic[J]. Plos One, 2022, 17(1): e261332. DOI: 10.1371/journal.pone.0261332. [19] Bai BK, Jiang QY, Hou J. The COVID-19 epidemic and other notifiable infectious diseases in China[J]. Microbes Infect, 2022, 24(1): 104881. DOI: 10.1016/j.micinf.2021.104881. [20] Hu CY, Tang YW, Su QM, et al. Public health measures during the COVID-19 pandemic reduce the spread of other respiratory infectious diseases[J]. Front Public Health, 2021, 9: 771638. DOI: 10.3389/fpubh.2021.771638. -