非药物性干预措施对湖北省荆州市法定传染病发病的影响

刘天 吴杨 陈琦 黄继贵 罗曼

刘天, 吴杨, 陈琦, 黄继贵, 罗曼. 非药物性干预措施对湖北省荆州市法定传染病发病的影响[J]. 疾病监测. doi: 10.3784/jbjc.202202170045
引用本文: 刘天, 吴杨, 陈琦, 黄继贵, 罗曼. 非药物性干预措施对湖北省荆州市法定传染病发病的影响[J]. 疾病监测. doi: 10.3784/jbjc.202202170045
Liu Tian, Wu Yang, Chen Qi, Huang Jigui, Luo Man. Impact of non-pharmaceutical interventions on incidence of notifiable infectious disease in Jingzhou, Hubei[J]. Disease Surveillance. doi: 10.3784/jbjc.202202170045
Citation: Liu Tian, Wu Yang, Chen Qi, Huang Jigui, Luo Man. Impact of non-pharmaceutical interventions on incidence of notifiable infectious disease in Jingzhou, Hubei[J]. Disease Surveillance. doi: 10.3784/jbjc.202202170045

非药物性干预措施对湖北省荆州市法定传染病发病的影响

doi: 10.3784/jbjc.202202170045
基金项目: 荆州市2021年度医疗卫生科技计划(No. 2021HC20)
详细信息
    作者简介:

    刘天,男,湖北省荆州市人,主管医师,主要从事急性传染病防制工作,Email:jzcdclt@163.com

    通讯作者:

    吴杨,Tel:   ,Email:hubeiallen@163.com

  • 中图分类号: R211;R-05

Impact of non-pharmaceutical interventions on incidence of notifiable infectious disease in Jingzhou, Hubei

Funds: This study was supported by fund for Jingzhou 2021 Medical and Health Science and Technology Plan Project (No. 2021HC20)
More Information
  • 摘要:   目的   评价非药物性干预措施(NPIs)对湖北省荆州市法定传染病(NIDs)发病的影响。  方法   收集2014年12月29日(2015年1周)至2021年1月3日(2020年53周)荆州市NIDs周发病数。 2015年1周至2020年5周作为历史数据拟合贝叶斯结构时间序列(BSTS)模型并预测2020年6—53周NIDs发病数。 2020年6—53周实际值分别与2015—2019年同期NIDs发病数、模型预测值比较,采用相对下降(RR)评价NPIs对NIDs的影响。 分病种、分性别、分年龄、分类(甲乙类、丙类;呼吸道、肠道、血源及性传播、自然疫源性)、分时期(6—18周、19—24周、25—53周)进行亚组分析。  结果   2020年6—53周累计报告NIDs 20种18 952例,较2015—2019年同期下降45.26%。 基于BSTS模型,2020年6—53周较预期下降60.42%(95% CI: 50.98%~69.66%),其中甲乙类NIDs、丙类NIDs分别下降36.63% (95% CI: 30.60%~43.19%)、60.72% (95% CI: 33.97%~85.32%)。 6—18周、19—24周、25—53周分别下降70.29% (95% CI: 56.88%~83.29%)、61.71% (95% CI: 45.34%~79.13%)、55.68% (95% CI: 45.60%~67.29%)。 从传播途径来看,呼吸道传染病下降幅度最大(RR=61.53%,95% CI: 22.60%~100.87%);其次为肠道传染病 (RR=19.72%,95% CI: 2.98%~35.29%)。 分年龄来看,15~64岁年龄组下降幅度最大(RR=72.74%, 95% CI: 65.68%~80.10%),其次为0~14岁年龄组(RR=54.51%,95% CI: 19.78%~87.15%)。 分地区来看,2020年不同地区新型冠状病毒肺炎(新冠肺炎)发病率与降幅存在正相关性($ {r_s} $= 0.714,P=0.058)。 RR最大的前5位病种分别为风疹(999.77%,95% CI: −2326.82%~4510.97%)、流行性感冒(68.93%, 95% CI: 91.76~117.10%)、猩红热(88.59%, 95% CI: 64.78%~112.12%)、手足口病(86.09%, 95% CI: 77.46%~94.55%)、急性出血性结膜炎(78.54%, 95% CI: 28.11%~127.26%)。  结论   NPIs在控制新冠肺炎疫情同时,大幅降低湖北省荆州市NIDs发病数,其效果在人群、疾病、时间和空间方面具有异质性。
  • 图  1  2015—2019年荆州市NIDs分类拟合贝叶斯结构时间序列模型结果

    Figure  1.  Fitting of BSTS model for notifiable infectious diseases in Jingzhou, 2015–2019

    图  2  基于贝叶斯结构时间序列模型的2020年6—53周荆州市法定传染病预测数与实际数比较

    Figure  2.  Comparison of predicted and actual cases of notifiable infectious diseases in Jingzhou based on BSTS model, week 6–53 in 2020

    图  3  基于实际值与模型拟合相对下降的空间分布

    Figure  3.  Spatial distribution of RRs calculated based on actual values and model fitting

    图  4  基于实际值与模型拟合相对下降的分病种比较

    Figure  4.  Comparison of RRs by disease type based on actual value and model fitting

    表  1  荆州市2020年6—53周病例数与2015—2019年同期法定传染病年均病例数比较

    Table  1.   Comparison case number of notifiable infectious disease between week 6–53 in 2020 and week 6–53 during 2015–2019 in Jingzhou

      分类6—53周6—18周19—24周25—53周
    2015—
    2019年
    2020年RR(%)2015—
    2019年
    2020年RR(%)2015—
    2019年
    2020年RR(%)2015—
    2019年
    2020年RR(%)
    甲乙类传染病17 09911 90030.414 8662 79042.662 2091 73421.5010 0247 37626.42
    丙类传染病17 5267 05259.765 1471 03279.952 79472873.949 5855 29244.79
    呼吸道传染病8 9704 94544.873 0151 67344.5197954244.644 9762 73045.14
    肠道传染病13 4965 64858.153 56060682.982 48260975.467 4544 43340.53
    血源及性传播疾病11 6158 05230.683 3141 49254.981 4771 18619.706 8245 37421.25
    自然疫源性传染病54430743.571245158.8765125−92.3135513163.10
    性别
     女性14 5798 06244.704 2441 65261.072 0641 02450.398 2715 38634.88
     男性20 04610 89045.675 7692 17062.392 9391 43851.0711 3387 28235.77
    年龄组(岁)
      0~1414 7295 21964.574 28071283.362 53743282.977 9124 07548.50
     15~6415 73510 23634.954 5672 37048.111 9511 51022.609 2176 35631.04
     ≥654 1613 49715.961 16674036.54515520−0.972 4802 2379.80
    地区
     沙市区4 8881 88461.461 29440069.0971322368.722 8811 26156.23
     荆州区3 9781 55260.991 15132272.0263321665.882 1941 01453.78
     公安县5 6193 15443.871 55956563.7683137854.513 2292 21131.53
     监利市4 3523 09828.811 20465645.5161944428.272 5291 99821.00
     江陵县3 0091 59546.9985630564.3742626537.791 7271 02540.65
     石首市3 8092 37737.601 13847258.5256127550.982 1101 63022.75
     洪湖市4 0772 40940.911 19747760.1554528547.712 3351 64729.46
     松滋市4 8932 88341.081 61462561.2867537644.302 6041 88227.73
      合计34 62518 95245.2610 0133 82261.835 0032 46250.7919 60912 66835.40
    下载: 导出CSV

    表  2  基于BSTS模型的2020年6—53周荆州市法定传染病预计相对下降情况[%(95% CI)]

    Table  2.   RR of notifiable infectious diseases in Jingzhou based onBSTS model, week 6–53 in 2020 (%)

      分类6—53周6—18周19—24周25—53周
    甲乙类传染病36.63(30.6~43.19)43.80(35.18~53.12)26.05(13.74~38.13)35.68(28.42~43.49)
    丙类传染病60.72(33.97~85.32)81.57(51.46~112.17)72.71(33.04~110.1)45.35(9.61~77.17)
    呼吸道传染病61.53(22.6~100.87)71.78(34.51~109.67)66.82(1.01~131.53)52.37(2.14~105.48)
    肠道传染病19.72(2.98~35.29)69.97(50.23~89.51)42.05(14.71~67.64)−11.75(−33.3~8.87)
    血源及性传播疾病18.07(6.53~29.48)46.41(34.15~58.35)5.68(−11.02~22.37)7.12(−6.63~20.41)
    自然疫源性传染病−140.51(−313.92~43.95)−44.37(−348.3~210.84)−597.74(−935.69~−233.42)−76.06(−300.72~151.78)
    性别
     女性 62.04(51.18~72.15)70.90(56.73~85.25)63.99(46.6~83.18)57.65(45.64~69.28)
     男性54.59(44.01~65.18)66.37(50.65~80.65)54.98(35.71~74.06)49.20(37.63~61.48)
    年龄组(岁)
      0~1454.51(19.78~87.15)80.67(43.39~118.72)75.26(24.49~123.41)32.59(−15.42~76.32)
     15~6472.74(65.68~80.1)71.19(63.06~79.52)63.27(53.32~73.21)74.79(67.23~82.41)
     ≥6526.14(20.13~31.95)41.42(31.97~50.12)13.55(1.15~26.07)22.05(15.1~28.99)
    地区
     沙市区72.64(54.45~90.43)77.18(51.71~103.24)75.92(45.17~109.87)70.02(49.75~91)
     荆州区68.26(53.31~83.57)75.20(52.3~96.87)68.16(41.81~98.97)65.16(45.1~82.39)
     公安县42.06(34.26~50)60.78(48.51~73.73)47.25(30.43~63.85)32.71(23.3~42.86)
     监利市46.89(39.48~54.21)55.43(44.13~66.53)39.16(24.32~53.88)44.99(35.81~53.61)
     江陵县52.57(30.62~74.23)65.71(33.02~94.55)41.99(0.1~84.35)49.04(23.94~76.48)
     石首市67.21(51.89~82.72)73.15(48.91~99.21)71.12(43.3~103.34)64.06(46.41~82.31)
     洪湖市79.00(70.99~86.5)81.38(71.81~91.07)79.19(67.84~91.1)78.16(70.16~86.29)
     松滋市68.14(56.19~80.47)73.28(54.04~90.59)65.47(38.87~91.66)66.49(52.55~81.31)
      合计60.42(50.98~69.66)70.29(56.88~83.29)61.71(45.34~79.13)55.68(45.6~67.29)
    下载: 导出CSV
  • [1] Zhu N, Zhang D, Wang W, et al. A novel coronavirus from patients with pneumonia in China, 2019[J]. N Engl J Med, 2020, 382(8): 727–733. DOI:  10.1056/NEJMoa2001017.
    [2] Organization WH. Coronavirus disease 2019 (COVID-19): situation report—51[EB/OL].(2020−03−21)[2022−02−10]. https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200320-sitrep-60-covid-19.pdf?sfvrsn=8894045a_2.
    [3] Perra N. Non-pharmaceutical interventions during the COVID-19 pandemic: A review[J]. Phys Rep, 2021, 913: 1–52. DOI:  10.1016/j.physrep.2021.02.001.
    [4] Ullrich A, Schranz M, Rexroth U, et al. Impact of the COVID-19 pandemic and associated non-pharmaceutical interventions on other notifiable infectious diseases in Germany: An analysis of national surveillance data during week 1-2016 - week 32-2020[J]. Lancet Reg Health Eur, 2021, 6: 100103. DOI:  10.1016/j.lanepe.2021.100103.
    [5] Brueggemann AB, Jansen VRM, Shaw D, et al. Changes in the incidence of invasive disease due to Streptococcus pneumoniae, Haemophilus influenzae, and Neisseria meningitidis during the COVID-19 pandemic in 26 countries and territories in the Invasive Respiratory Infection Surveillance Initiative: a prospective analysis of surveillance data[J]. Lancet Digit Health, 2021, 3(6): e360–e370. DOI: 10.1016/S2589−7500(21)00077−7.
    [6] Xiao J, Dai J, Hu J, et al. Co-benefits of nonpharmaceutical intervention against COVID-19 on infectious diseases in China: a large population-based observational study[J]. Lancet Reg Health West Pac, 2021, 17: 100282. DOI:  10.1016/j.lanwpc.2021.100282.
    [7] Chen B, Wang M, Huang X, et al. Changes in incidence of notifiable infectious diseases in China under the Pprevention and control measures of COVID-19[J]. Front Public Health, 2021, 9: 728768. DOI:  10.3389/fpubh.2021.728768.
    [8] Adegbija O, Walker J, Smoll N, et al. Notifiable diseases after implementation of COVID-19 public health prevention measures in Central Queensland, Australia[J]. Commun Dis Intell (2018) , 2021: 45. DOI:  10.33321/cdi.2021.45.11.
    [9] Geng MJ, Zhang HY, Yu LJ, et al. Changes in notifiable infectious disease incidence in China during the COVID-19 pandemic[J]. Nat Commun, 2021, 12(1): 6923. DOI: 10.1038/s41467−021−27292−7.
    [10] Lai S, Ruktanonchai NW, Zhou L, et al. Effect of non-pharmaceutical interventions to contain COVID-19 in China[J]. Nature, 2020, 585(7825): 410–413. DOI: 10.1038/s41586−020−2293−x.
    [11] Li Z, Chen Q, Feng L, et al. Active case finding with case management: the key to tackling the COVID-19 pandemic[J]. Lancet, 2020, 396(10243): 63–70. DOI: 10.1016/S0140−6736(20)31278−2.
    [12] 曾旻敏, 刘天, 田克卿, 等. 2020年湖北省荆州市新型冠状病毒肺炎疫情流行特征分析[J]. 疾病监测,2021,36(2):120–126. DOI: 10.3784/jbjc.202008100268.

    Zeng MM, Liu T, Tian KQ, et al. Epidemiological characteristics of coronavirus diseases 2019 in Jingzhou, Hubei, 2020[J]. Dis Surveill, 2021, 36(2): 120–126. DOI:  10.3784/jbjc.202008100268.
    [13] 蔺茂文, 刘天, 田克卿, 等. 荆州市新型冠状病毒肺炎时空分布特征分析[J]. 上海交通大学学报: 医学版,2020,40(5):566–572.

    Lin MW, Liu T, Tian KQ, et al. Spatial-temporal distribution of coronavirus disease 2019 in Jingzhou city[J]. Journal of Shanghai JIAOTONG university:medical science, 2020, 40(5): 566–572.
    [14] de Vocht F, Tilling K, Pliakas T, et al. The intervention effect of local alcohol licensing policies on hospital admission and crime: a natural experiment using a novel Bayesian synthetictime-series method[J]. J Epidemiol Community Health, 2017, 71(9): 912–918. DOI: 10.1136/jech−2017−208931.
    [15] Amini P, Almasi-Hashiani A, Sahraian MA, et al. Multiple sclerosis projection in Tehran, Iran using Bayesian structural time series[J]. BMC Neurol, 2021, 21(1): 235. DOI: 10.1186/s12883−021−02281−x.
    [16] Scott SL, Varian HR. Predicting the present with Bayesian structural time series[J]. International Journal of Mathematical Modelling and Numerical Optimisation, 2014, 5(1-2): 4–23. DOI:  10.1504/IJMMNO.2014.059942.
    [17] Talkhi N, Akhavan F N, Ataei Z, et al. Modeling and forecasting number of confirmed and death caused COVID-19 in IRAN: A comparison of time series forecasting methods[J]. Biomed Signal Process Control, 2021, 66: 102494. DOI:  10.1016/j.bspc.2021.102494.
    [18] Hibiya K, Iwata H, Kinjo T, et al. Incidence of common infectious diseases in Japan during the COVID-19 pandemic[J]. Plos One, 2022, 17(1): e261332. DOI:  10.1371/journal.pone.0261332.
    [19] Bai BK, Jiang QY, Hou J. The COVID-19 epidemic and other notifiable infectious diseases in China[J]. Microbes Infect, 2022, 24(1): 104881. DOI:  10.1016/j.micinf.2021.104881.
    [20] Hu CY, Tang YW, Su QM, et al. Public health measures during the COVID-19 pandemic reduce the spread of other respiratory infectious diseases[J]. Front Public Health, 2021, 9: 771638. DOI:  10.3389/fpubh.2021.771638.
  • 加载中
图(4) / 表(2)
计量
  • 文章访问数:  70
  • HTML全文浏览量:  45
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-17
  • 网络出版日期:  2022-06-26

目录

    /

    返回文章
    返回

    在线交流

    防诈骗公告

    近期有不法分子以本刊编辑身份添加作者微信,请务必提高警惕!本刊关于稿件的一切事项通知均采用编辑部唯一邮箱(jbjc@icdc.cn)和座机(010-58900732)联系作者,且在录用稿件后仅收取版面费,无其他任何名目费用(如审稿费和加急费等),非编辑部邮箱发送的本刊收费用通知等均为诈骗,不要随意汇入款项!如有可疑及时致电编辑部核实确认!