2014-2020年广东省不同型别流感病毒季节性流行特征及变化趋势

谭小华 叶美云 庄雅丽 邓爱萍 杨宇威 张应涛 康敏

谭小华, 叶美云, 庄雅丽, 邓爱萍, 杨宇威, 张应涛, 康敏. 2014-2020年广东省不同型别流感病毒季节性流行特征及变化趋势[J]. 疾病监测.
引用本文: 谭小华, 叶美云, 庄雅丽, 邓爱萍, 杨宇威, 张应涛, 康敏. 2014-2020年广东省不同型别流感病毒季节性流行特征及变化趋势[J]. 疾病监测.
Tan Xiaohua, Ye Meiyun, Zhuang Yali, Deng Aiping, Yang Yuwei, Zhang Yingtao, Kang Min. Seasonality, epidemiological characteristics and dynamic changes of influenza viruses subtypes/lineages in Guangdong, 2014–2020[J]. Disease Surveillance.
Citation: Tan Xiaohua, Ye Meiyun, Zhuang Yali, Deng Aiping, Yang Yuwei, Zhang Yingtao, Kang Min. Seasonality, epidemiological characteristics and dynamic changes of influenza viruses subtypes/lineages in Guangdong, 2014–2020[J]. Disease Surveillance.

2014-2020年广东省不同型别流感病毒季节性流行特征及变化趋势

基金项目: 国家自然科学基金(No.82041030);广东省医学科学技术研究基金项目(No.C2020013)
详细信息
    作者简介:

    谭小华,男,广东省茂名市人,副主任医师,主要从事急性传染病防控工作,Email:tanxiaohua9619@163.com

    通讯作者:

    康敏,Tel:020–31051456,Email:kangmin@cdcp.org.cn

  • 中图分类号: R211;R373.1+3

Seasonality, epidemiological characteristics and dynamic changes of influenza viruses subtypes/lineages in Guangdong, 2014–2020

Funds: This study was supported by National Natural Science Foundation of China (No.82041030) and Medical Scientific Research Foundation of Guangdong Province (No.C2020013)
More Information
  • 摘要:   目的  探讨广东省不同型别流行性感冒(流感)季节性流行特征差异及动态变化趋势,为该省流感的精准防控提供依据。  方法  收集广东省2014年第36周至2020年第35周6个监测年度每周流感病原学监测数据,采用移动流行区间法(MEM)确定每个年度流行季,分析流感病毒流行季节性特征;采用χ2检验比较分析不同型别流感季节性流行特征及变化趋势。  结果  广东省流感主要呈现冬春季和春夏季流行,2016 — 2017年度及之前流行高峰多出现在夏季,2017 — 2018年及之后均出现在冬季。分析比较2014 — 2015年至2018 — 2019年季节性流行特征,结果显示,0~2岁年龄组阳性率最低,随年龄增长,阳性率先上升,7~18岁年龄阳性率最高,然后呈现下降趋势;不同年龄组各型别分布存在差异,A型高于B型。A(H1N1)pdm09亚型和B(Yamagata)系冬季流行,A(H3N2)亚型夏季流行,B(Victoria)系为春季流行。与2016 — 2017年及之前相比,2017 — 2018年及之后,7~18岁和19~59岁年龄组感染比例上升,而其他年龄组则下降。A(H1N1)pdm09亚型、B(Yamagata)系由春季流行为主变为冬季流行为主,A(H3N2)亚型由夏季为主转为春季多见,B(Victoria)系仍以春季多见。  结论  广东省在2017 — 2018年度以来出现冬季流行高峰;不同亚型/系流感流行具有型别特异的流行特征和变化趋势;需持续做好流感病原学监测,以科学精准判定与防控流感流行趋势。
  • 图  1  2014-2020年广东省流感病毒检测阳性率时间分布热点

    注:季节分布:Aut.秋季,Win.冬季,Spr.春季,Sum.夏季。流行期:Epi(起始周次 ~ 结束周次);PR. 流感病毒检测阳性率(%)

    Figure  1.  Time distribution of positive rate of influenza virus detection in Guangdong,2014–2020

    表  1  广东省各流行季流感病毒优势型别分布

    Table  1.   Seasonal distribution of subtypes/lineages of influenza viruses in Guangdong

    流行季季节持续周次数峰值(%)和
    出现周次
    主优势型别次优势型别其他型别及
    其阳性率均值峰值(%)
    病毒型别峰值(%)和出现周次流行季周阳性率均值(%) 病毒型别峰值(%)和出现周次流行季周阳性率均值(%)
    2014年第11周至
    2015年第30周
    春夏季2044.43
    (25)
    A(H3)39.02
    (25)
    12.81By13.13
    (14)
    7.61A(H1)(0.39)
    Bv(0.27)
    2016年第5周至
    2016年第21周
    冬春季1742.44
    (12)
    A(H1)22.69
    (12)
    12.43Bv19.46
    (13)
    9.65By(2.93)
    A(H3)(0.70)
    2017年第13周至
    2017第33周
    春夏季2140.95
    (28)
    A(H3)37.50
    (29)
    15.56A(H1)8.63
    (17)
    3.93Bv(0.52)
    By(0.23)
    2017年第50周至
    2018年第14周
    冬春季1741.92
    (3)
    By32.46
    (2)
    16.82A(H1)14.19
    (11)
    6.54Bv(3.33)
    A(H3)(0.18)
    2018年第49周至
    2019年第28周
    冬春夏季3245.26
    (3)
    A(H1)39.83
    (2)
    13.41Bv23.72
    (20)
    8.35A(H3)(5.17)
    By(0.03)
    2019年第49周至
    2020年第7周a
    冬季1138.50
    (2)
    A(H3)31.53
    (2)
    16.33A(H1)8.63
    (17)
    3.93Bv(1.89)
    By(0.00)
      注:a.2019—2020年因受新型冠状病毒肺炎疫情影响,2020年3月后流感病毒检出率基本为0%,本年度监测数据仅作为流行季变化趋势分析参考
    下载: 导出CSV

    表  2  流感监测年度流行季不同型别流感病毒特征

    Table  2.   Characteristics of influenza virus subtypes/lineages in influenza in surveillance seasons

    项目阳性数(份)检测数(份)阳性率(%)各型别流感病毒阳性数(份)和构成比(%)
    A(H1)亚型A(H3)亚型Bv系By系
    地区
     珠三角83143106226.772814(33.85)2300(27.66)1623(19.52)1577(18.97)
     非珠三角69403141522.092132(30.72)2185(31.48)1314(18.93)1309(18.86)
    性别
     男84013492424.062600(30.95)2454(29.21)1668(19.85)1679(19.99)
     女68532755324.872346(34.23)2031(29.64)1269(18.52)1207(17.61)
    年龄组(岁)
     0~22641509715.00756(33.39)809(35.73)340(15.02)359(15.86)
     3~35251527323.081173(33.28)892(25.30)772(21.90)688(19.52)
     7~34901020534.20778(22.29)1060(30.37)793(22.72)859(24.61)
     19~51401818628.261940(37.74)1405(27.33)992(19.30)803(15.62)
     ≥60835371622.47299(35.81)319(38.20)40(4.79)177(21.20)
    季节
     冬50031752128.552699(53.95)340(6.80)435(8.69)1529(30.56)
     春63353034320.882 029(32.03)1317(20.79)1 894(29.90)1095(17.28)
     夏39161461326.80218(5.57)2828(72.22)608(15.53)262(6.69)
    监测年度
     2014—201524911175721.1946(1.85)1516(60.86)31(1.24)898(36.05)
     2015—201625981000525.971262(48.58)72(2.77)969(37.30)295(11.35)
     2016—201724921225720.33482(19.34)1919(77.01)63(2.53)28(1.12)
     2017—20182652987326.86647(24.40)18(0.68)328(12.37)1659(62.56)
     2018—201950211858527.022509(49.97)960(19.12)1546(30.79)6(0.12)
    合计152546247724.424946(32.42)4485(29.40)2937(19.25)2886(18.92)
    下载: 导出CSV

    表  3  2017年前后流感监测年度流行季不同型别流感病毒流行特征

    Table  3.   Comparison of characteristics of influenza virus subtypes/lineages in surveillance seasons before and after 2017

    特征流感病毒总阳性数和
    构成比(%)
    χ2
    P值)
    A(H1)阳性数和
    构成比(%)
    χ2
    P值)
    A(H3)阳性数和
    构成比(%)
    χ2
    P值)
    Bv阳性数和
    构成比(%)
    χ2
    P值)
    By阳性数和
    构成比(%)
    χ2
    P值)
    总计和构成比(%)
    2017年后2017年前2017年后2017年前2017年后2017年前2017年后2017年前2017年后2017年前
    地区
     珠三角4110
    (53.56)
    4204
    (55.45)
    5.493
    (0.019)
    1734
    (54.94)
    1080
    (60.34)
    13.542
    (0.000)
    464
    (47.44)
    1836
    (52.35)
    7.375
    (0.007)
    991
    (52.88)
    632
    (59.45)
    11.852
    (0.001)
    921
    (55.32)
    656
    (53.73)
    0.718
    (0.397)
    8314
    (54.50)
     非珠三角3563
    (46.44)
    3377
    (44.55)
    1422
    (45.06)
    710
    (39.66)
    514
    (52.56)
    1671
    (47.65)
    883
    (47.12)
    431
    (40.55)
    744
    (44.68)
    565
    (46.27)
    6940
    (45.50)
    性别
     男4188
    (54.58)
    4213
    (55.57)
    1.517
    (0.218)
    1623
    (51.43)
    977
    (54.58)
    4.560
    (0.033)
    546
    (55.83)
    1908
    (54.41)
    0.625
    (0.429)
    1063
    (56.72)
    605
    (56.91)
    0.010
    (0.920)
    956
    (57.42)
    723
    (59.21)
    0.934
    (0.334)
    8401
    (55.07)
     女3485
    (45.42)
    3368
    (44.43)
    1533
    (48.57)
    813
    (45.42)
    432
    (44.17)
    1599
    (45.59)
    811
    (43.28)
    458
    (43.09)
    709
    (42.58)
    498
    (40.79)
    6853
    (44.93)
    年龄组(岁)
     0 ~914
    (11.91)
    1350
    (17.81)
    170.447
    (0.000)
    437
    (13.85)
    319
    (17.82)
    31.473
    (0.000)
    106
    (10.84)
    703
    (20.05)
    188.342
    (0.000)
    187
    (9.98)
    153
    (14.39)
    90.956
    (0.000)
    184
    (11.05)
    175
    (14.33)
    13.995
    (0.007)
    2264
    (14.84)
     3 ~1705
    (22.22)
    1820
    (24.01)
    716
    (22.69)
    457
    (25.53)
    181
    (18.51)
    711
    (20.27)
    415
    (22.15)
    357
    (33.58)
    393
    (23.60)
    295
    (24.16)
    3525
    (23.11)
     7 ~1971
    (25.69)
    1519
    (20.04)
    547
    (17.33)
    231
    (12.91)
    385
    (39.37)
    675
    (19.25)
    510
    (27.21)
    283
    (26.62)
    529
    (31.77)
    330
    (27.03)
    3490
    (22.88)
     19 ~2710
    (35.32)
    2430
    (32.05)
    1264
    (40.05)
    676
    (37.77)
    262
    (26.79)
    1143
    (32.59)
    735
    (39.22)
    257
    (24.18)
    449
    (26.97)
    354
    (28.99)
    5140
    (33.70)
     ≥60岁373
    (4.86)
    462
    (6.09)
    192
    (6.08)
    107
    (5.98)
    44
    (4.50)
    275
    (7.84)
    27
    (1.44)
    13
    (1.22)
    110
    (6.61)
    67
    (5.49)
    835
    (5.47)
    季节
     冬4444
    (57.92)
    559
    (7.37)
    4720.591
    (0.000)
    2336
    (74.02)
    363
    (20.28)
    1370.315
    (0.000)
    312
    (31.90)
    28
    (0.80)
    1485.022
    (0.000)
    330
    (17.61)
    105
    (9.88)
    396.516
    (0.000)
    1466
    (88.05)
    63
    (5.16)
    2368.963
    (0.000)
    5003
    (32.80)
     春2422
    (31.57)
    3913
    (51.62)
    783
    (24.81)
    1246
    (69.61)
    468
    (47.85)
    849
    (24.21)
    972
    (51.87)
    922
    (86.74)
    199
    (11.95)
    896
    (73.38)
    6335
    (41.53)
     夏807
    (10.52)
    3109
    (41.01)
    37
    (1.17)
    181
    (10.11)
    198
    (20.25)
    2630
    (74.99)
    572
    (30.52)
    36
    (3.39)
    (0.00)262
    (21.46)
    3916
    (25.67)
    合计7673
    (100.00)
    7581
    (100.00)
    3156
    (100.00)
    1790
    (100.00)
    978
    (100.00)
    3507
    (100.00)
    1874
    (100.00)
    1063
    (100.00)
    1665
    (100.00)
    1221
    (100.00)
    15254
    (100.00)
      注:2017年后,为2017—2018年至2018—2019年2个监测年度;2017年前,为2014—2015年至2016—2017年3个监测年度。
    下载: 导出CSV
  • [1] 王大燕. 中国流感监测网络的发展与展望[J]. 中华流行病学杂志,2018,39(8):1036–1040. DOI:10.3760/cma.j.issn.0254−6450.2018.08.005.

    Wang DY. Development and prospect of Influenza Surveillance Network in China[J]. Chin J Epidemiol, 2018, 39(8): 1036–1040. DOI: 10.3760/cma.j.issn.0254−6450.2018.08.005.
    [2] Bedford T, Riley S, Barr IG, et al. Global circulation patterns of seasonal influenza viruses vary with antigenic drift[J]. Nature, 2015, 523(7559): 217–220. DOI:  10.1038/nature14460.
    [3] Xu ZW, Li ZJ, Hu WB. Global dynamic spatiotemporal pattern of seasonal influenza since 2009 influenza pandemic[J]. Infect Dis Poverty, 2020, 9(1): 2. DOI: 10.1186/s40249−019−0618−5.
    [4] Baumgartner EA, Dao CN, Nasreen S, et al. Seasonality, timing, and climate drivers of influenza activity worldwide[J]. J Infect Dis, 2012, 206(6): 838–846. DOI:  10.1093/infdis/jis467.
    [5] Dave K, Lee PC. Global geographical and temporal patterns of seasonal influenza and associated climatic factors[J]. Epidemiol Rev, 2019, 41(1): 51–68. DOI:  10.1093/epirev/mxz008.
    [6] Yu HJ, Alonso WJ, Feng LZ, et al. Characterization of regional influenza seasonality patterns in China and implications for vaccination strategies: spatio-temporal modeling of surveillance data[J]. PLoS Med, 2013, 10(11): e1001552. DOI:  10.1371/journal.pmed.1001552.
    [7] Lin JY, Kang M, Zhong HJ, et al. Influenza seasonality and predominant subtypes of influenza virus in Guangdong, China, 2004-2012[J]. J Thorac Dis, 2013, 5(S2): S109–S117. DOI: 10.3978/j.issn.2072−1439.2013.08.09.
    [8] 康敏, 谭小华, 杨宇威, 等. 广东省2017-2018年冬季流感流行特征研究[J]. 中华流行病学杂志,2018,39(8):1071–1076. DOI:10.3760/cma.j.issn.0254−6450.2018.08.011.

    Kang M, Tan XH, Yang YW, et al. Epidemiological characteristics of influenza in Guangdong province, during winter of 2017–2018[J]. Chin J Epidemiol, 2018, 39(8): 1071–1076. DOI: 10.3760/cma.j.issn.0254−6450.2018.08.011.
    [9] 广东省卫生健康委员会. 广东省流感监测方案(2017年版)[DB/OL]. (2017–05–31)[2018–04–30]. http://wsjkw.gd.gov.cn/old_gkml/content/post_2131078.html.

    Health Commission of Guangdong Province. The Guangdong Provincial influenza surveillance protocol (2017 Ed)[DB/OL]. (2017–05–31)[2018–04–30]. http://wsjkw.gd.gov.cn/old_gkml/content/post_2131078.html.
    [10] Vega T, Lozano JE, Meerhoff T, et al. Influenza surveillance in Europe: establishing epidemic thresholds by the moving epidemic method[J]. Influenza Other Respir Viruses, 2013, 7(4): 546–558. DOI: 10.1111/j.1750−2659.2012.00422.x.
    [11] 刘天, 姚梦雷, 黄继贵, 等. 移动流行区间法在流感监测预警中的应用及其参数设置[J]. 国际病毒学杂志,2018,25(6):415–418. DOI:10.3760/cma.j.issn.1673−4092.2018.06.015.

    Liu T, Yao ML, Huang JG, et al. Application and parameter optimization of the moving epidemic method for influenza surveillance and early warning[J]. Int J Virol, 2018, 25(6): 415–418. DOI: 10.3760/cma.j.issn.1673−4092.2018.06.015.
    [12] Jennings L, Huang QS, Barr I, et al. Literature review of the epidemiology of influenza B disease in 15 countries in the Asia-Pacific region[J]. Influenza Other Respir Viruses, 2018, 12(3): 383–411. DOI:  10.1111/irv.12522.
    [13] Ang LW, Tien WS, Lin RTP, et al. Characterization of influenza activity based on virological surveillance of influenza-like illness in tropical Singapore, 2010-2014[J]. J Med Virol, 2016, 88(12): 2069–2077. DOI:  10.1002/jmv.24566.
    [14] 傅俊杰, 戴启刚, 霍翔. 2011-2019年江苏省不同型别流感病毒流行特征差异分析[J]. 疾病监测,2020,35(11):992–997. DOI:10.3784/j.issn.1003−9961.2020.11.008.

    Fu JJ, Dai QG, Huo X. Epidemiological characteristics of influenza viruses at subtypes/lineages level in Jiangsu, 2011–2019[J]. Dis Surveill, 2020, 35(11): 992–997. DOI: 10.3784/j.issn.1003−9961.2020.11.008.
    [15] Yang J, Lau YC, Wu P, et al. Variation in influenza B virus epidemiology by lineage, China[J]. Emerg Infect Dis, 2018, 24(8): 1536–1540. DOI:  10.3201/eid2408.180063.
    [16] Li Y, Reeves RM, Wang X, et al. Global patterns in monthly activity of influenza virus, respiratory syncytial virus, parainfluenza virus, and metapneumovirus: a systematic analysis[J]. Lancet Global Health, 2019, 7(8): e1031–e1045. DOI: 10.1016/S2214−109X(19)30264−5.
    [17] 王晴, 张慕丽, 秦颖, 等. 2011-2019年中国B型流感季节性、年龄特征和疫苗匹配度分析[J]. 中华流行病学杂志,2020,41(11):1813–1817. DOI:10.3760/cma.j.cn112338−20200318−00375.

    Wang Q, Zhang ML, Qin Y, et al. Analysis on seasonality, age distribution of influenza B cases and matching degree of influenza B vaccine in China, 2011–2019[J]. Chin J Epidemiol, 2020, 41(11): 1813–1817. DOI: 10.3760/cma.j.cn112338−20200318−00375.
    [18] Park JE, Son WS, Ryu Y, et al. Effects of temperature, humidity, and diurnal temperature range on influenza incidence in a temperate region[J]. Influenza Other Respir Viruses, 2020, 14(1): 11–18. DOI:  10.1111/irv.12682.
    [19] Chong KC, Lee TC, Bialasiewicz S, et al. Association between meteorological variations and activities of influenza A and B across different climate zones: a multi-region modelling analysis across the globe[J]. J Infect, 2020, 80(1): 84–98. DOI:  10.1016/j.jinf.2019.09.013.
    [20] Deyle ER, Maher MC, Hernandez RD, et al. Global environmental drivers of influenza[J]. Proc Natl Acad Sci USA, 2016, 113(46): 13081–13086. DOI:  10.1073/pnas.1607747113.
    [21] 张林. 2018年中国气候变化蓝皮书发布: 指出中国是全球气候变化敏感区和影响显著区[N/OL]. 中国气象报, 2018–04–04(01) [2021–04–26]. http://www.cma.gov.cn/2011xwzx/2011xqxxw/2011xqxyw/201804/t20180404_465788.html.

    Zhang L. Blue Book on Climate Change in China 2018 China is sensitive to and significantly affected by global climate change[N/OL]. China Meteorological News, (2018–04–04) [2021–04–26]. http://www.cma.gov.cn/2011xwzx/2011xqxxw/2011xqxyw/201804/t20180404_465788.html.
    [22] 栾菲. 中国气候变化蓝皮书(2019)发布 气候系统变暖趋势进一步持续[EB/OL]. (2019–04–03) [2021–04–26]. http://www.cma.gov.cn/2011xwzx/2011xqxxw/2011xqxyw/201904/t20190403_519580.html.

    Luan F. Blue Book on Climate Change in China 2019 The global warming would continues further[EB/OL]. (2019–04–03) [2021–04–26]. http://www.cma.gov.cn/2011xwzx/2011xqxxw/2011xqxyw/201904/t20190403_519580.html.
    [23] 张琳皓. 中国气候变化蓝皮书(2020)发布 气候系统多项指标呈加速变化趋势[EB/OL]. (2018–08–25) [2021–04–26]. http://www.cma.gov.cn/2011xwzx/2011xqxxw/2011xqxyw/202008/t20200825_561628.html.

    Zhang LH. Blue Book on Climate Change in China 2020 Multiple indicators of the climate system change in an accelerating trend[EB/OL]. (2018–08–25)[2021–04–26]. http://www.cma.gov.cn/2011xwzx/2011xqxxw/2011xqxyw/202008/t20200825_561628.html.
    [24] Chan HS, Kok MH, Lee TC. Temperature trends in Hong Kong from a seasonal perspective[J]. Clim Res, 2012, 55(1): 53–63. DOI:  10.3354/cr01133.
    [25] Towers S, Chowell G, Hameed R, et al. Climate change and influenza: the likelihood of early and severe influenza seasons following warmer than average winters[J]. PLoS Curr, 2013, 5: ecurrents.flu.3679b56a3a5313dc7c043fb944c6f138. DOI:  10.1371/currents.flu.3679b56a3a5313dc7c043fb944c6f138.
    [26] Somes MP, Turner RM, Dwyer LJ, et al. Estimating the annual attack rate of seasonal influenza among unvaccinated individuals: A systematic review and meta-analysis[J]. Vaccine, 2018, 36(23): 3199–3207. DOI:  10.1016/j.vaccine.2018.04.063.
    [27] Cowling BJ, Perera RAPM, Fang VJ, et al. Incidence of influenza virus infections in children in Hong Kong in a 3-year randomized placebo-controlled vaccine study, 2009-2012[J]. Clin Infect Dis, 2014, 59(4): 517–524. DOI:  10.1093/cid/ciu356.
    [28] Tong SX, Li Y, Rivailler P, et al. A distinct lineage of influenza A virus from bats[J]. Proc Natl Acad Sci USA, 2012, 109(11): 4269–4274. DOI:  10.1073/pnas.1116200109.
    [29] Park JE, Ryu Y. Transmissibility and severity of influenza virus by subtype[J]. Infect Genet Evol, 2018, 65: 288–292. DOI:  10.1016/j.meegid.2018.08.007.
    [30] Caini S, Spreeuwenberg P, Kusznierz GF, et al. Distribution of influenza virus types by age using case-based global surveillance data from twenty-nine countries, 1999-2014[J]. BMC Infect Dis, 2018, 18: 269. DOI: 10.1186/s12879−018−3181−y.
    [31] Baggett HC, Chittaganpitch M, Thamthitiwat S, et al. Incidence and epidemiology of hospitalized influenza cases in rural Thailand during the influenza A (H1N1) pdm09 pandemic, 2009-2010[J]. PLoS One, 2012, 7(11): e48609. DOI:  10.1371/journal.pone.0048609.
  • 加载中
图(1) / 表(3)
计量
  • 文章访问数:  167
  • HTML全文浏览量:  107
  • PDF下载量:  26
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-21
  • 网络出版日期:  2021-08-09

目录

    /

    返回文章
    返回

    在线交流

    防诈骗公告

    近期有不法分子以本刊编辑身份添加作者微信,请务必提高警惕!本刊关于稿件的一切事项通知均采用编辑部唯一邮箱(jbjc@icdc.cn)和座机(010-58900732)联系作者,且在录用稿件后仅收取版面费,无其他任何名目费用(如审稿费和加急费等),非编辑部邮箱发送的本刊收费用通知等均为诈骗,不要随意汇入款项!如有可疑及时致电编辑部核实确认!