宁波市耐多药肺结核二线抗结核药物耐药状况及耐药基因突变特征研究

车洋 贺天锋 林律 平国华

车洋, 贺天锋, 林律, 平国华. 宁波市耐多药肺结核二线抗结核药物耐药状况及耐药基因突变特征研究[J]. 疾病监测, 2021, 36(10): 1075-1080. doi: 10.3784/jbjc.202103100114
引用本文: 车洋, 贺天锋, 林律, 平国华. 宁波市耐多药肺结核二线抗结核药物耐药状况及耐药基因突变特征研究[J]. 疾病监测, 2021, 36(10): 1075-1080. doi: 10.3784/jbjc.202103100114
Che Yang, He Tianfeng, Lin Lyu, Ping Guohua. Characteristics of second-line anti-tuberculosis drug resistance and gene mutation of multidrug-resistant Mycobacterium tuberculosis in Ningbo[J]. Disease Surveillance, 2021, 36(10): 1075-1080. doi: 10.3784/jbjc.202103100114
Citation: Che Yang, He Tianfeng, Lin Lyu, Ping Guohua. Characteristics of second-line anti-tuberculosis drug resistance and gene mutation of multidrug-resistant Mycobacterium tuberculosis in Ningbo[J]. Disease Surveillance, 2021, 36(10): 1075-1080. doi: 10.3784/jbjc.202103100114

宁波市耐多药肺结核二线抗结核药物耐药状况及耐药基因突变特征研究

doi: 10.3784/jbjc.202103100114
基金项目: 宁波市自然科学基金(No. 2019A610385);宁波市医疗卫生品牌学科(No. PPXK2018-10)
详细信息
    作者简介:

    车洋,男,浙江省宁波市人,硕士,副主任技师,主要从事结核病防制研究工作

    通讯作者:

    车洋,Tel: 0574–87279131,Email:13805876046@163.com

  • 中图分类号: R211; R52

Characteristics of second-line anti-tuberculosis drug resistance and gene mutation of multidrug-resistant Mycobacterium tuberculosis in Ningbo

Funds: This study was supported by Natural Science Foundation of Ningbo (No. 2019A610385) and Ningbo Health Branding Subject Fund (No. PPXK2018-10)
More Information
  • 摘要:   目的  分析宁波地区耐多药肺结核(MDR-TB)二线抗结核药物耐药状况及耐药基因突变特征。  方法  研究纳入本地区2018 — 2019 年结核病耐药监测收集的1597株结核分枝杆菌痰培养阳性菌株中的133株MDR-TB作为研究对象(老年组31例,中青年组102例),应用RD105缺失基因检测法对133株MDR-TB菌株进行北京基因型鉴定,同时采用1%比例法对其进行卡那霉素、阿米卡星、卷曲霉素、氧氟沙星、左氧氟沙星5种二线抗结核药物的耐药检测。通过PCR DNA直接测序法检测6个二线抗结核药物耐药相关基因(rrstlyAeisgidBgyrAgyrB )的突变特征。  结果  本地区结核分枝杆菌总的耐多药率为8.33%(133/1597),133例MDR-TB的卡那霉素、阿米卡星、卷曲霉素、氧氟沙星和左氧氟沙星的耐药率分别为7.52%(10/133)、6.01%(8/133)、3.01%(4/133)、30.08%,(40/133)、29.32%(39/133)。 133例MDR-TB 的准广泛耐药率(Pre-XDR)为28.57%(38/133)、广泛耐药率(XDR-TB)为6.01%,(8/133)。 133例MDR-TB rrs突变率为6.77%(9/133)、tlyA为7.52%(10/133)、eis为1.50%(2/133)、gidB为3.76%(5/133)、gyrA为34.59%(46/133)、gyrB为3.01%(4/133)。 6个基因的突变类型(rrs 2种、tlyA 1种、eis 2种、gidB 2种,gyrA 5种、gyrB 4种)均以点突变为主。  结论  宁波地区MDR-TB二线抗结核药物耐药形势较为严峻,尤其是氟喹诺酮类药物耐药率较高,需进一步加强耐二线抗结核药物MDR-TB的防控工作。
  • 表  1  耐药基因引物序列及其扩增片段

    Table  1.   Primer sequences of drug resistance genes and amplified fragments

    基因引物序列(5′~3′)产物长度(bp)扩增区域(bp)
    rrsF1:TGGCCGTTTGTTTTGTCAGG
    R1:CCGCACGCTCACAGTTAAG694正向67~627
    F2:GTGCCAGCAGCCGCGGTAAT
    R2:CCGGCAGTCTCTCACGAGT651506~1 156
    F3:TGTCGTGAGATGTTGGGTTA
    R3:GCCAACTTTGTTGTCATGC5721063~反向98
    tlyAF1:AGGCGCACGAGGTGTTGTTG
    R1:AACGACAGGTCGGCCACTACCAGGT528正向57~470
    F2:ATGTCGGATACGGCCAGCTG
    R2:ACTTTTTCTACGCGCCGTGC555334~反向81
    eisF1:GCGTAACGTCACGGCGAAATTC
    R1:GTCAGCTCATGCAAGGTG567正向124~421
    gidBF1:CGTAATGTCTCCGATCGAGC
    R1:CTTTGATGGCGAGCATTCG46038~490
    gyrAF1:TCGACTATGCGATGAGCGTG
    R1:GGTAGCACCGTCGGCTCTTG41586~502
    gyrBF1:CCGCTGTGATCTCGGTGAAG
    R1:AGACCCTTGTACCGCTGAATG7751064~1839
    下载: 导出CSV

    表  2  133例耐多药肺结核二线抗结核药物耐药特征

    Table  2.   Characteristics of second-line anti-TB drug resistances of 133 MDR-M. tuberculosis isolates

     特征合计(n=133)老年组(n=31)中青年组(n=102)χ2 P
    性别
     男性 94(70.68) 20(64.52) 74(72.55)
     女性 39(29.32) 11(35.48) 28(27.45) 0.740 0.390
    治疗史
     初治 54(40.60) 14(45.16) 40(39.22)
     复治 79(59.40) 17(54.84) 62(60.78) 0.348 0.555
    空洞
     是 75(56.39) 16(51.61) 59(57.84)
     否 58(43.61) 15(48.39) 43(42.16) 0.375 0.540
    耐药情况
     卡那霉素
     是 10(7.52) 2(6.45) 8(7.84)
     否 123(92.48) 29(93.55) 94(92.16) 1.000
     阿米卡星
     是 8(6.01) 2(6.45) 6(5.88)
     否 125(93.99) 29(93.55) 96(94.12) 1.000
     卷曲霉素
     是 4(3.01) 2(6.45) 2(1.96)
     否 129(96.99) 29(93.55) 100(98.04) 0.232
     氧氟沙星
     是 40(30.08) 10(32.26) 30(29.41)
     否 93(69.92) 21(67.74) 72(70.59) 0.092 0.762
     左氧氟沙星
     是 39(29.32) 8(25.80) 31(30.39)
     否 94(70.68) 23(74.20) 71(69.61) 0.241 0.623
     准广泛耐药
     是 38(28.57) 7(22.58) 31(30.39)
     否 95(71.43) 24(77.42) 71(69.61) 0.711 0.399
     广泛耐药
     是 8(6.01) 3(9.68) 5(4.90)
     否 125(93.99) 28(90.32) 97(95.10) 0.388
    北京基因型
     是 106(79.70) 23(74.20) 83(81.37)
     否 27(20.30) 8(25.80) 19(18.63) 0.757 0.384
    耐药基因突变
     rrs基因
     是 9(6.77) 0(0.00) 9(8.82)
     否 124(93.23) 31(100.00) 93(91.18) 0.116
     tlyA基因
     是 10(7.52) 3(9.68) 7(6.86)
     否 123(92.48) 28(90.32) 95(93.14) 0.698
     eis基因
     是 2(1.50) 0(0.00) 2(1.96)
     否 131(98.50) 31(100.00) 100(98.04) 1.000
     gidB基因
     是 5(3.76) 1(3.23) 4(3.92)
     否 128(96.24) 30(96.77) 98(96.08) 1.000
     gyrA基因
     是 46(34.59) 8(25.80) 38(37.25)
     否 87(65.41) 23(74.20) 64(62.75) 1.377 0.241
     gyrB基因
     是 4(3.01) 1(3.23) 3(2.94)
     否 129(96.99) 30(96.77) 99(97.06) 1.000
      注:括号外数据为例数,括号内数据为构成比(%)
    下载: 导出CSV

    表  3  133株耐多药结核分枝杆菌二线抗结核药物耐药相关基因突变特征

    Table  3.   Characteristics of gene mutations of 133 MDR-M. tuberculosis isolates with second-line anti-TB drug resistance

    耐药基因二线抗结核药物核苷酸突变
    类型
    氨基酸突变
    类型
    老年组MDR-TB
    n=31)
    中青年组MDR-TB(n=102)MDR-TB
    菌株总数
    KANAMKCAPOFXLVX
    rrsSSSSSA1401GSer467Ser022
    RRSRRA1401GSer467Ser022
    RRSSSA1401GSer467Ser011
    SSSRRA514CSer172Ala011
    SSSSSA514CSer172Ala033
    tlyARRRRRT708GLeu236Phe101
    SSSSST708GLeu236Phe156
    SSSRST708GLeu236Phe101
    SSSRRT708GLeu236Phe022
    eisSSSSSA10TThr4Arg011
    SSSRRA10GThr4Arg011
    gidBSSSSS115位缺失C移码突变134
    SSSSSA208CSer70Arg011
    gyrASSSRRC269TAla90His268
    SSSSSC269TAla90His022
    RSSRRT271CSer91Pro112
    SSSRRG280AAsp94Asn101
    SSSRRA281CAsp94Ala022
    SSSSRA281CAsp94Ala022
    SSSRRA281GAsp94Gly214 16
    SSSRSA281GAsp94Gly123
    SSSSRA281GAsp94Gly011
    RRSRRA281GAsp94Gly033
    SSSSSA281GAsp94Gly156
    gyrBSSSRRT1505GVal502Gly022
    SSSSSG1485TArg495Ala011
    SSSRSA1495GAsn499Asp101
      注:KAN. 卡那霉素;AMK. 阿米卡星;CAP. 卷曲霉素;OFX. 氧氟沙星;LVX. 左氧氟沙星;R. 耐药;S. 敏感;MDR-TB.耐多药结核病
    下载: 导出CSV
  • [1] World Health Organization. Global tuberculosis Report 2019[M]. Geneva: World Health Organization, 2019.
    [2] 陈燕, 赵丽丽, 孙庆, 等. 耐多药结核分枝杆菌耐药相关基因突变特征分析[J]. 疾病监测,2014,29(4):305–309. DOI:10.3784/j.issn.1003−9961.2014.04.014.

    Chen Y, Zhao LL, Sun Q, et al. Characteristics of drug resistance associated mutations in multi-drug resistant Mycobacterium tuberculosis[J]. Dis Surveill, 2014, 29(4): 305–309. DOI: 10.3784/j.issn.1003−9961.2014.04.014.
    [3] 刘海灿, 赵丽丽, 赵秀芹, 等. 耐多药结核分枝杆菌二线药物耐药相关基因的分析[J]. 疾病监测,2016,31(6):471–476. DOI:10.3784/j.issn.1003−9961.2016.06.007.

    Liu HC, Zhao LL, Zhao XQ, et al. Analysis on second line drug resistance related genes in multidrug-resistant Mycobacterium tuberculosis isolates[J]. Dis Surveill, 2016, 31(6): 471–476. DOI: 10.3784/j.issn.1003−9961.2016.06.007.
    [4] 周美兰, 陈梓, 王坚杰, 等. 武汉市涂阳肺结核患者耐药率及耐药谱分析[J]. 中国防痨杂志,2013,35(2):97–102.

    Zhou ML, Chen Z, Wang JJ, et al. Analysis of the drug resistance patterns and resistance rates among smear positive TB patients in Wuhan city[J]. Chin J Antitubercul, 2013, 35(2): 97–102.
    [5] Zumla AI, Gillespie SH, Hoelscher M, et al. New antituberculosis drugs, regimens, and adjunct therapies: needs, advances, and future prospects[J]. Lancet Infect Dis, 2014, 14(4): 327–340. DOI: 10.1016/S1473−3099(13)70328−1.
    [6] Li J, Chung PH, Leung CLK, et al. The strategic framework of tuberculosis control and prevention in the elderly: a scoping review towards end TB targets[J]. Infect Dis Poverty, 2017, 6(1): 70. DOI: 10.1186/s40249−017−0284−4.
    [7] Li J, Yip BHK, Leung C, et al. Screening for latent and active tuberculosis infection in the elderly at admission to residential care homes: a cost-effectiveness analysis in an intermediate disease burden area[J]. PLoS One, 2018, 13(1): e0189531. DOI:  10.1371/journal.pone.0189531.
    [8] 中国防痨协会. 耐药结核病化学治疗指南(2019年简版)[J]. 中国防痨杂志,2019,41(10):1026–1027. DOI:10.3969/j.issn.1000−6621.2019.10.001.

    China Anti-Tuberculosis Association. Guidelines for chemotherapy of drug resistant tuberculosis[J]. Chin J Antituberc, 2019, 41(10): 1026–1027. DOI: 10.3969/j.issn.1000−6621.2019.10.001.
    [9] 中国防痨协会基础专业委员会. 结核病诊断实验室检验规程[M]. 北京: 中国教育文化出版社, 2006: 49–51.

    China Anti-tuberculosis Association Foundation Committee. Laboratory testing procedures for tuberculosis diagnosis[M]. Beijing: China Education Culture Publishing House, 2006: 49–51.
    [10] Aziz MA, Wright A. The World Health Organization/International Union against tuberculosis and lung disease global project on surveillance for anti-tuberculosis drug resistance: a model for other infectious diseases[J]. Clin Infect Dis, 2005, 41 Suppl 4: S258–262. DOI:  10.1086/430786.
    [11] Chen J, Tsolaki AG, Shen X, et al. Deletion-targeted multiplex PCR (DTM-PCR) for identification of Beijing/W genotypes of Mycobacterium tuberculosis[J]. Tuberculosis, 2007, 87(5): 446–449. DOI:  10.1016/j.tube.2007.05.014.
    [12] Kendall EA, Cohen T, Mitnick CD, et al. Second-line drug susceptibility testing to inform the treatment of rifampin-resistant tuberculosis: a quantitative perspective[J]. Int J Infect Dis, 2017, 56: 185–189. DOI:  10.1016/j.ijid.2016.12.010.
    [13] Sharma AK, Gupta N, Kala DK, et al. A study on pattern of resistance to second line anti tubercular drugs among multi drug resistant tuberculosis patients[J]. Indian J Tuberc, 2018, 65(3): 233–236. DOI:  10.1016/j.ijtb.2018.02.005.
    [14] Dijkstra JA, Van Der Laan T, Akkerman OW, et al. In vitro susceptibility of Mycobacterium tuberculosis to amikacin, kanamycin, and capreomycin[J]. Antimicrob Agents Chemother, 2018, 62(3): e01724–17. DOI: 10.1128/AAC.01724−17.
    [15] Feng Y, Liu SJ, Wang QG, et al. Rapid diagnosis of drug resistance to fluoroquinolones, amikacin, capreomycin, kanamycin and ethambutol using genotype MTBDRsl assay: a Meta-analysis[J]. PLoS One, 2013, 8(2): e55292. DOI:  10.1371/journal.pone.0055292.
    [16] Georghiou SB, Magana M, Garfein RS, et al. Evaluation of genetic mutation associated with Mycobacterium tuberculosis resistance to amikacin, kanamycin and capreomycin: a systematic review[J]. PLoS One, 2012, 7(3): e33275. DOI:  10.1371/journal.pone.0033275.
    [17] Chen QY, Pang Y, Liang QF, et al. Molecular characteristics of MDR Mycobacterium tuberculosis strains isolated in Fujian, China[J]. Tuberculosis (Edinb) , 2014, 94(2): 159–161. DOI:  10.1016/j.tube.2013.03.004.
    [18] Hu Y, Hoffner S, Wu LL, et al. Prevalence and genetic characterization of second-line drug resistant and extensively drug-resistant Mycobacterium tuberculosis in rural China[J]. Antimicrob Agents Chemother, 2013, 57(8): 3857–3863. DOI: 10.1128/AAC.00102−13.
    [19] Engström A, Perskvist N, Werngren J, et al. Comparison of clinical isolates and in vitro selected mutants reveals that tlyA is not a sensitive genetic marker for capreomycin resistance in Mycobacterium tuberculosis[J]. J Antimicrob Chemother, 2011, 66(6): 1247–1254. DOI:  10.1093/jac/dkr109.
    [20] Juréen P, Ängeby K, Sturegård E, et al. Wild-type MIC distributions for aminoglycoside and cyclic polypeptide antibiotics used for treatment of Mycobacterium tuberculosis infections[J]. J Clin Microbiol, 2010, 48(5): 1853–1858. DOI: 10.1128/JCM.00240−10.
    [21] Spies FS, Ribeiro AW, Ramos DF, et al. Streptomycin resistance and lineage-specific polymorphisms in Mycobacterium tuberculosis gidB gene[J]. J Clin Microbiol, 2011, 49(7): 2625–2630. DOI: 10.1128/JCM.00168−11.
    [22] Okamoto S, Tamaru A, Nakajima C, et al. Loss of a conserved 7-methylguanosine modification in 16S rRNA confers low-level streptomycin resistance in bacteria[J]. Mol Microbiol, 2007, 63(4): 1096–1106. DOI: 10.1111/j.1365−2958.2006.05585.x.
    [23] Wong SY, Lee JS, Kwak HK, et al. Mutations in gidB confer low-level streptomycin resistance in mycobacterium tuberculosis[J]. Antimicrob Agents Chemother, 2011, 55(6): 2515–2522. DOI: 10.1128/AAC.01814−10.
    [24] Zhang ZJ, Lu J, Wang YF, et al. Prevalence and molecular characterization of fluoroquinolone-Resistant Mycobacterium tuberculosis isolates in China[J]. Antimicrob Agents Chemother, 2014, 58(1): 364–369. DOI: 10.1128/AAC.01228−13.
    [25] 车洋, 杨天池, 平国华, 等. 浙江省宁波地区耐多药结核分枝杆菌北京基因型的流行及与喹诺酮耐药关系的研究[J]. 疾病监测,2017,32(12):962–965. DOI:10.3784/j.issn.1003−9961.2017.12.016.

    Che Y, Yang TC, Ping GH, et al. Genotyping and quinolone resistance analysis of multi-drug resistant tuberculosis strains in Ningbo, China[J]. Dis Surveill, 2017, 32(12): 962–965. DOI: 10.3784/j.issn.1003−9961.2017.12.016.
    [26] Takiff HE, Salazar L, Guerrero C, et al. Cloning and nucleotide sequence of Mycobacterium tuberculosis gyrA and gyrB genes and detection of quinolone resistance mutations[J]. Antimicrob Agents Chemother, 1994, 38(4): 773–780. DOI:  10.1128/AAC.38.4.773.
    [27] Shi RR, Zhang JY, Li CY, et al. Emergence of ofloxacin resistance in Mycobacterium tuberculosis clinical isolates from China as determined by gyrA mutation analysis using denaturing high-pressure liquid chromatography and DNA sequencing[J]. J Clin Microbiol, 2006, 44(12): 4566–4568. DOI: 10.1128/JCM.01916−06.
    [28] Wang JY, Lee LN, Lai HC, et al. Fluoroquinolone resistance in Mycobacterium tuberculosis isolates: associated genetic mutations and relationship to antimicrobial exposure[J]. J Antimicrob Chemother, 2007, 59(5): 860–865. DOI:  10.1093/jac/dkm061.
    [29] Mokrousov I, Otten T, Manicheva O, et al. Molecular characterization of ofloxacin-resistant Mycobacterium tuberculosis strains from Russia[J]. Antimicrob Agents Chemother, 2008, 52(8): 2937–2939. DOI: 10.1128/AAC.00036−08.
  • 加载中
计量
  • 文章访问数:  268
  • HTML全文浏览量:  113
  • PDF下载量:  24
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-10
  • 网络出版日期:  2021-04-30
  • 刊出日期:  2021-10-30

目录

    /

    返回文章
    返回

    在线交流

    防诈骗公告

    近期有不法分子以本刊编辑身份添加作者微信,请务必提高警惕!本刊关于稿件的一切事项通知均采用编辑部唯一邮箱(jbjc@icdc.cn)和座机(010-58900732)联系作者,且在录用稿件后仅收取版面费,无其他任何名目费用(如审稿费和加急费等),非编辑部邮箱发送的本刊收费用通知等均为诈骗,不要随意汇入款项!如有可疑及时致电编辑部核实确认!