2017-2024年江苏省苏州市肺结核登记率趋势预测模型构建研究

Establishment of prediction model for pulmonary tuberculosis registration rate in Suzhou, Jiangsu, 2017−2024

  • 摘要:
    目的  分析2017—2024年江苏省苏州市肺结核的登记率趋势,探讨比较季节性自回归移动平均(SARIMA)模型、指数平滑空间状态(TBATS)模型、极限学习机(ELM)模型在苏州市肺结核预测中的应用效果,为肺结核防控策略制定提供科学依据。
    方法  基于2017—2023年苏州市肺结核月登记率数据分别拟合建立SARIMA模型、 TBATS模型和ELM模型,采用2024年1—12月苏州市肺结核月登记率数据验证模型,采用均方根误差(RMSE)、平均绝对误差(MAE)和平均绝对百分比误差(MAPE)比较模型拟合预测效果。
    结果  苏州市2017—2024年共登记肺结核23 623例,年登记率由27.21/10万下降到17.61/10万,呈逐年下降趋势。 每年5—9月为苏州市肺结核登记高峰期,2月为登记低谷。 SARIMA模型、 TBATS模型、ELM模型预测的RMSE、MAE和MAPE分别为0.25%、0.21%、14.40%,0.23%、0.18%、12.57%,0.12%、0.10%、6.58%。
    结论 3种模型对苏州市各月肺结核登记率均有较好预测效果,ELM模型预测准确度相对最高,可用于苏州市肺结核疫情的监测和预警。

     

    Abstract:
    Objective To analyze the registration rate of pulmonary tuberculosis (TB) in Suzhou, Jiangsu province, from 2017 to 2024, and compare the application effects of the seasonal autoregressive integrated moving average (SARIMA) model, exponential smoothing state space model with Box-Cox transformation, autoregressive moving average errors, trend and seasonal components (TBATS) model, and extreme learning machine (ELM) model in the prediction of pulmonary TB in Suzhou, and provide evidence for the development of pulmonary TB prevention and control strategies.
    Methods Based on the monthly registration rate of pulmonary TB in Suzhou from 2017 to 2023, the SARIMA model, TBATS model, and ELM model were fitted and established. The monthly registration rate of pulmonary TB from January to December 2024 were used to validate the models. The root mean square error (RMSE), mean absolute error (MAE), and mean absolute percentage error (MAPE) were used to compare the fitting and prediction performance of the models.
    Results A total of 23,623 cases of pulmonary TB were registered in Suzhou from 2017 to 2024, the annual registration rate showed a downward trend from 27.21/100 000 to 17.61/100 000. The annual registration peak of TB occurred during May - September, while the trough was in February in Suzhou. The RMSE, MAE, and MAPE predicted by the SARIMA model, TBATS model, and ELM model were 0.25%, 0.21%, 14.40%; 0.23%, 0.18%, 12.57%; and 0.12%, 0.10%, 6.58%, respectively.
    Conclusion All the three models demonstrated good predictive performance in the prediction of the monthly registration rate of pulmonary TB in Suzhou, and the ELM model showed better prediction accuracy, and can be used to predict short-term trend of TB incidence in Suzhou.

     

/

返回文章
返回