-
摘要: 新型冠状病毒肺炎(COVID-19)疫情发生至今仍呈全球蔓延态势,提示自然状态下疫情仍将持续。 虽然对新型冠状病毒(SARS-CoV-2)感染的治疗已取得一定进展,但仍不足以遏制疫情的发展。 因此,人类将控制COVID-19疫情的希望寄托在疫苗的研发上。 目前,多个COVID-19疫苗产品在完成Ⅲ期临床试验后应用于人群的免疫接种。 大众对不同种类新冠疫苗的安全性、免疫原性、保护效力、免疫程序及病毒变异应对等问题十分关注。 由于各研发机构采用不同的评价指标发布疫苗研发与应用的相关信息,媒体又从不同视角和口径进行解读,令大众和行内专家学者感到迷惑,对疫苗应用的效果产生疑虑。 本综述收集、分析已公开的研究数据,就COVID-19疫苗研发现状及上市后应用的一些热点问题进行探讨。Abstract: The pandemic of COVID-19 continues to spread worldwide, suggesting that the epidemic would continue in natural state. Although some progress has been achieved in the treatment of COVID-19, it is far from containing the spread of the epidemic. Therefore, human beings have pinned their hopes of controlling the COVID-19 epidemic on the development of vaccines. Currently, several COVID-19 vaccine products have been applied to immunize the population after completion of phase Ⅲ clinical trials. The safety, immunogenicity, efficacy, immunization procedures and response to virus mutations of different COVID-19 vaccines are the great concern of the public. The public and experts in the field are confused about the efficacy of vaccines due to the different evaluation indicators used by research and development institutions in publishing vaccine development and application information and the interpretation by media from different perspectives and calibers. This paper summarizes the published research data and discusses the hot issues in development and post-marketing application of COVID-19 vaccine.
-
表 1 不同技术路线研发新型冠状病毒肺炎疫苗的优劣势对比[2]
Table 1. Advantages and disadvantages of different technical routes COVID-19 vaccine development
疫苗 抗原生产 优 点 缺 点 减毒活疫苗 体外 免疫原性强,效力时间长 研发速度缓慢,筛选难度较高 灭活疫苗 体外 技术相对成熟,安全性较高 研发和生产需要的硬件条件较高,免疫原性较低,常需与佐剂配合使用 重组蛋白疫苗 体外 免疫原性强,产品质量相对稳定 对抗原蛋白的纯度和稳定性要求较高 病毒载体疫苗 体外/体内 可呈递多种抗原,效率较高 广泛存在的预存免疫可能会影响免疫效果,有一定生物学风险 mRNA疫苗 体内 可呈递多种抗原,体内不长期留存 相对传统疫苗,疫苗疑似不良反应较多,如无合适载体则容易降解 DNA疫苗 体内 稳定,可呈递多种抗原,免疫时间持久 长时间留存有安全隐患 -
[1] World Health Organization. Coronavirus disease (COVID-19) pandemic[EB/OL]. (2020−01−17)[2021−03−11]. https://www.who.int/emergencies/diseases/novel-coronavirus-2019. [2] Le TT, Andreadakis Z, Kumar A, et al. The COVID-19 vaccine development landscape[J]. Nat Rev Drug Discov, 2020, 19(5): 305–306. DOI: 10.1038/d41573−020−00073−5. [3] 朱瑶, 韦意娜, 孙畅, 等. 新型冠状病毒肺炎疫苗研究进展[J]. 预防医学,2021,33(2):143–148. DOI:10.19485/j.cnki.issn2096−5087.2021.02.009.Zhu Y, Wei YN, Sun C, et al. Development of vaccines against COVID-19[J]. Prev Med, 2021, 33(2): 143–148. DOI: 10.19485/j.cnki.issn2096−5087.2021.02.009. [4] 宋全伟, 王华庆. 不同技术路线研发新型冠状病毒疫苗的特性和研究进展[J]. 中华医学杂志,2020,100(38):3030–3040. DOI:10.3760/cma.j.cn112137−20200824−02454.Song QW, Wang HQ. Characterization and research progress of different technical routes to develop COVID-19 vaccines[J]. Nat Med J China, 2020, 100(38): 3030–3040. DOI: 10.3760/cma.j.cn112137−20200824−02454. [5] Shimabukuro TT, Cole M, Su JR. Reports of anaphylaxis after receipt of mRNA COVID-19 vaccines in the US-December 14, 2020-January 18, 2021[J]. JAMA, 2021. DOI: 10.1001/jama.2021.1967. [6] Zhang YJ, Zeng G, Pan HX, et, al. Immunogenicity and safety of a SARS-CoV-2 inactivated vaccine in healthy adults aged 18–59 years: report of the randomized, double-blind, and placebo-controlled phase 2 clinical trial[J]. Lancet Infect Dis, 2021, 21(1): 39–51. DOI: 10.1016/S1473−3099(20)30831−8. [7] Wu SP, Zhong GX, Zhang J, et al. A single dose of an adenovirus-vectored vaccine provides protection against SARS-CoV-2 challenge[J]. Nat Commun, 2020, 11: 4081. DOI: 10.1038/s41467−020−17972−1. [8] 赵铠. 疫苗研究与应用[M]. 北京. 人民卫生出版社, 2013: 22–25.Zhao K. Vaccine research and application[M]. Beijing. People's Health Publishing House, 2013: 22–25. [9] 李书明, 周振海, 姜树林, 等. 北京市男男性行为者HIV和梅毒螺旋体血清抗体阳转率及影响因素[J]. 中华预防医学杂志,2011,45(2):118–122. DOI:10.3760/cma.j.issn.0253−9624.2011.02.005.Li SM, Zhou ZH, Jiang SL, et al. Incidence and risk factors of HIV and syphilis seroconversion among men who have sex with men in Beijing[J]. Chin J Prev Med, 2011, 45(2): 118–122. DOI: 10.3760/cma.j.issn.0253−9624.2011.02.005. [10] 金鹏飞, 张力, 李靖欣, 等. 科学理性解读COVID-19疫苗Ⅲ期临床保护效力数据[J/OL]科学通报, 2021. (2021−02−04). https://kns.cnki.net/kcms/detail/11.1784.N.20210203.1319.003.html.Jin PF, Zhang L, Li JX, et al. A better understanding on efficacy data of phase I trials for COVID-19 vaccines[J/OL]. Chin Sci Bull, 2021. (2021−02−04). https://kns.cnki.net/kcms/detail/11.1784.N.20210203.1319.003.html. [11] Lindsey RB, Hana MES, Brandon E, et. al Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine[J]. N Engl J Med, 2020, 2. 384(5): 401–416. DOI: 10.1056/NEJMoa2035389. [12] Polack FP, Thomas SJ, Kitchin N, et al. Safety and efficacy of the BNT162b2 mRNA COVID-19 vaccine[J]. N Engl J Med, 2020, 383(27): 2603–2615. DOI: 10.1056/NEJMoa2034577. [13] Voysey M, Clemens SAC, Madhi SA, et al. Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: an interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK[J]. Lancet, 2021, 397(10269): 99–111. DOI: 10.1016/S0140−6736(20)32661−1. [14] Denis YL, Inna VD, Dmitry VS, et. al Safety and efficacy of an rAd26 and rAd5 vector-based heterologous prime-boost COVID-19 vaccine: an interim analysis of a randomised controlled phase 3 trial in Russia[J]. Lancet, 2021, 397(10275): 671–681. DOI: 10.1016/S0140−6736(21)00234−8. [15] Xia SL, Duan K, Zhang YT, et al. Effect of an inactivated vaccine against SARS-CoV-2 on safety and immunogenicity outcomes[J]. JAMA, 2020, 324(10): 951–960. DOI: 10.1001/jama.2020.15543. [16] Sette A, Crotty S. Adaptive immunity to SARS-CoV-2 and COVID-19[J]. Cell, 2021, 184(4): 861–880. DOI: 10.1016/j.cell.2021.01.007. [17] Grossberg AN, Koza LA, Ledreux A, et al. A multiplex chemiluminescent immunoassay for serological profiling of COVID-19-positive symptomatic and asymptomatic patients[J]. Nat Commun, 2021, 12: 740. DOI: 10.1038/s41467−021−21040−7. [18] Lumley SF, O'Donnell D, Stoesser NE, et al. Antibody status and incidence of SARS-CoV-2 infection in health care workers[J]. N Engl J Med, 2021, 384(6): 533–540. DOI: 10.1056/NEJMoa2034545. [19] Moncunill G, Mayor A, Santano R, et al. SARS-CoV-2 seroprevalence and antibody kinetics among health care workers in a Spanish hospital after 3 months of follow-up[J]. J Infect Dis, 2021, 223(1): 62–71. DOI: 10.1093/infdis/jiaa696. [20] Sadoff J, Le GM, Shukarev G, et al. Interim results of a phase 1-2a trial of Ad26. CoV2. S COVID-19 vaccine[J]. N Engl J Med, 2021. DOI: 10.1056/NEJMoa2034201. [21] Xia SL, Zhang YT, Wang YX, et al. Safety and immunogenicity of an inactivated SARS-CoV-2 vaccine, BBIBP-CorV: a randomised, double-blind, placebo-controlled, phase 1/2 trial[J]. Lancet Infect Dis, 2021, 21(1): 39–51. DOI: 10.1016/S1473−3099(20)30831−8. [22] Zhu FC, Wurie AH, Hou LH, et al. Safety and immunogenicity of a recombinant adenovirus type-5 vector-based Ebola vaccine in healthy adults in Sierra leone: a single-centre, randomised, double-blind, placebo-controlled, phase 2 trial[J]. Lancet, 2017, 389(10069): 621–628. DOI: 10.1016/S0140−6736(16)32617−4. [23] Logunov DY, Dolzhikova IV, Zubkova OV, et al. Safety and immunogenicity of an rAd26 and rAd5 vector-based heterologous prime-boost COVID-19 vaccine in two formulations: two open, non-randomised phase 1/2 studies from Russia[J]. Lancet, 2020, 396(10255): 887–897. DOI: 10.1016/S0140−6736(20)31866−3. [24] Gu HJ, Chen Q, Yang G, et al. Adaptation of SARS-CoV-2 in BALB/c mice for testing vaccine efficacy[J]. Science, 2020, 369(6511): 1603–1607. DOI: 10.1126/science.abc4730. [25] Tegally H, Wilkinson E, Giovanetti M, et al. Emergence and rapid spread of a new severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) lineage with multiple spike mutations in South Africa[Z]. 2020.DOI: 10.1101/2020.12.21.20248640. [26] Wang PF, Liu LH, Iketani S, et. al. Increased resistance of SARS-CoV-2 variants B. 1.351 and B. 1.1. 7 to antibody neutralizaion[J]. BioRxiv. 2021.DOI: 10.1101/2021.01.25.428137. [27] Michael K, Alex R, Angus B. et, al. S-variant SARS-CoV-2 lineage B1.1. 7 is associated with significantly higher viral loads in samples tested by ThermoFisher TaqPath RT-qPCR[J]. J Infect Dis. 2021.2.DOI: 10.1093/infdis/jiab082. [28] Tegally H, Wilkinson E, Giovanetti M, et al. Emergence and rapid spread of a new severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) lineage with multiple spike mutations in South Africa[J]. medRxiv, 2020. DOI: 10.1101/2020.12.21.20248640v1. [29] Wang ZJ, Schmidt F, Weisblum Y, et al. mRNA vaccine-elicited antibodies to SARS-CoV-2 and circulating variants[J]. Nature, 2021. DOI: 10.1038/s41586−021−03324−6. [30] Andreano E, Piccini G, Licastro D, et al. SARS-CoV-2 escape in vitro from a highly neutralizing COVID-19 convalescent plasma[J]. bioRxiv, 2020. DOI: 10.1101/2020.12.28.424451. -

表(1)
计量
- 文章访问数: 1308
- HTML全文浏览量: 492
- PDF下载量: 304
- 被引次数: 0