杨诗杰, 马俊英, 张雪飞, 王虎, 马霄, 多杰才仁, 车光柱, 贡桑曲珍, 庞华胜, 王威, 刘玉芳, 郭帅, 马万里, 司晓妹. 智能项圈在包虫病犬驱虫应用中的初步评价[J]. 疾病监测, 2022, 37(9): 1216-1222. DOI: 10.3784/jbjc.202205280247
引用本文: 杨诗杰, 马俊英, 张雪飞, 王虎, 马霄, 多杰才仁, 车光柱, 贡桑曲珍, 庞华胜, 王威, 刘玉芳, 郭帅, 马万里, 司晓妹. 智能项圈在包虫病犬驱虫应用中的初步评价[J]. 疾病监测, 2022, 37(9): 1216-1222. DOI: 10.3784/jbjc.202205280247
Yang Shijie, Ma Junying, Zhang Xuefei, Wang Hu, Ma Xiao, Duojie Cairen, Che Guangzhu, Gongsang Quzhen, Pang Huasheng, Wang Wei, Liu Yufang, Guo Shuai, Ma Wanli, Si Xiaomei. Preliminary evaluation of application of smart collar in dog deworming in echinococcosis control[J]. Disease Surveillance, 2022, 37(9): 1216-1222. DOI: 10.3784/jbjc.202205280247
Citation: Yang Shijie, Ma Junying, Zhang Xuefei, Wang Hu, Ma Xiao, Duojie Cairen, Che Guangzhu, Gongsang Quzhen, Pang Huasheng, Wang Wei, Liu Yufang, Guo Shuai, Ma Wanli, Si Xiaomei. Preliminary evaluation of application of smart collar in dog deworming in echinococcosis control[J]. Disease Surveillance, 2022, 37(9): 1216-1222. DOI: 10.3784/jbjc.202205280247

智能项圈在包虫病犬驱虫应用中的初步评价

Preliminary evaluation of application of smart collar in dog deworming in echinococcosis control

  • 摘要:
      目的  探讨智能项圈在包虫病源头防控中的应用价值。
      方法  采用简单随机抽样分组,智能项圈驱虫组(干预组)的犬佩戴智能项圈,采用物联网技术进行远程管理控制,每月定时自动投放驱虫药饵1次;人工驱虫组(对照组)采用现有人工投放药饵驱虫模式。 采用ELISA方法检测犬粪棘球绦虫抗原, SPSS 20.0软件处理数据,广义估算方程(GEE)分析驱虫效果。
      结果  智能项圈驱虫组在驱虫开始、驱虫3个月、6个月、9个月和12个月时项圈佩戴率分别为100.00%(421/421)、96.20%(405/421)、89.31%(376/421)、84.56%(356/421)和94.06%(396/421);累积投药完成率分别为74.36%(313/421)、91.37%(1154/1263)、84.76%(2141/2526)、80.15%(3037/3789)和74.43%(3760/5052)。 12次驱虫后,智能项圈驱虫组和人工驱虫组均能显著降低犬粪棘球绦虫抗原阳性率(差异具有统计学意义,χ2 =20.723,P=0.014; χ2=26.145, P=0.002)。 使用智能项圈驱虫对犬具有更显著的保护作用,其感染风险比人工驱虫组降低27%(95%置信区间0.556~0.959)。
      结论  作为一种新的驱虫工具,智能项圈驱虫维持了较高的驱虫覆盖率和驱虫完成率,有效降低犬棘球绦虫感染风险,值得进一步应用评价。

     

    Abstract:
      Objective  To evaluate the application of smart collar in dog deworming in echinococcosis source control.
      Methods  By Simple random sampling, the dogs were divided into two groups. The dog in smart collar group (intervention group) were given smart collars with the function of automatic delivery of deworming baits once a month, and the Internet of Things technology was used for remote management and control. The dogs in manual deworming group (control group) were dewormed by manual delivery of deworming baits. The positive rate of Echinococcus antigen in canine feces was detected by enzyme linked immunosorbent assay (ELISA), and software SPSS 20.0 was used for data process, and generalized estimating equations (GEE) were used to analyze the deworming effect.
      Results  In smart collar group, the consecutive wearing rates of smart collars were 100.00% (421/421), 96.20% (405/405/100), 89.31% (376/421), 84.56% (356/421), 94.06% (396/421) respectively at the beginning, 3 months, 6 months, 9 months, and 12 months of deworming, and the cumulative completion rates of automatic delivering baits were 74.36% (313/421), 91.37% (1154/1263), 84.76% (2141/2526), 80.15% (3037/3789), 74.43% (3760/5052). After 12 times of deworming, the positive rates of Echinococcus antigen in canine feces were significantly reduced in both smart collar group and manual deworming group (χ2=20.723, P=0.014; χ2=26.145, P=0.002), and the protective effect in smart collar group was stronger than in manual deworming group with a 27% lower risk of infection (95% confidence interval: 0.556−0.959).
      Conclusion  As a new deworming tool, deworming with the smart collar maintains a high deworming coverage rate and deworming completion rate, which can effectively reduce the infection risk of Echinococcus in dogs. Therefore, it is necessary to promote the use of smart collar in dog deworming and evaluate its public health significance.

     

/

返回文章
返回